找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Atomicity through Fractal Measure Theory; Mathematical and Phy Alina Gavrilu?,Ioan Merche?,Maricel Agop Book 2019 Springer Nature Switzerla

[復(fù)制鏈接]
樓主: duodenum
21#
發(fā)表于 2025-3-25 04:31:57 | 只看該作者
Atomicity via regularity for non-additive set multifunctions,In this chapter, atomicity is discussed via regularity for set multifunctions taking values in the family of all non- void subsets of a topological space.
22#
發(fā)表于 2025-3-25 11:35:06 | 只看該作者
Extended atomicity through non-differentiability and its physical implications,In this chapter, atomicity is presented via quantum measure theory and some of its physical applications are highlighted. Precisely, the mathematical concept of (minimal) atomicity is extended from a physical perspective, based on the non-differentiability of motion curves.
23#
發(fā)表于 2025-3-25 13:55:26 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:23 | 只看該作者
http://image.papertrans.cn/b/image/164805.jpg
25#
發(fā)表于 2025-3-25 22:14:24 | 只看該作者
26#
發(fā)表于 2025-3-26 03:43:53 | 只看該作者
Book 2019lications to quantum physics and, more generally, to the fractal theory of the motion, are highlighted. The study details the atomicity problem through key concepts, such as the atom/pseudoatom, atomic/nonatomic measures, and different types of non-additive set-valued multifunctions. Additionally, a
27#
發(fā)表于 2025-3-26 06:32:58 | 只看該作者
Book 2019The mathematical perspective is presented first and the discussion moves on to connect measure theory and quantum physics through quantum measure theory. New avenues of research, such as fractal/multifractal measure theory with potentialapplications in life sciences, are opened..
28#
發(fā)表于 2025-3-26 09:29:45 | 只看該作者
On a multifractal theory of motion in a non-differentiable space: Toward a possible multifractal th
29#
發(fā)表于 2025-3-26 15:58:31 | 只看該作者
30#
發(fā)表于 2025-3-26 20:47:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 16:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沁水县| 临朐县| 年辖:市辖区| 霍林郭勒市| 宣化县| 吕梁市| 临沭县| 甘肃省| 马龙县| 莱阳市| 吐鲁番市| 大同县| 老河口市| 开原市| 老河口市| 乐都县| 长兴县| 新乡县| 杭锦后旗| 温泉县| 兴隆县| 张掖市| 沛县| 板桥市| 凌海市| 修水县| 闽清县| 新干县| 北票市| 绵阳市| 建始县| 定远县| 金沙县| 宁化县| 怀安县| 诸城市| 邛崃市| 来凤县| 汕头市| 枣强县| 卓资县|