找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic, Algebraic and Geometric Aspects of Integrable Systems; In Honor of Nalini J Frank Nijhoff,Yang Shi,Da-jun Zhang Conference proc

[復制鏈接]
樓主: Pessimistic
31#
發(fā)表于 2025-3-26 23:29:39 | 只看該作者
32#
發(fā)表于 2025-3-27 04:22:56 | 只看該作者
Springer Proceedings in Mathematics & Statisticshttp://image.papertrans.cn/b/image/163845.jpg
33#
發(fā)表于 2025-3-27 06:22:35 | 只看該作者
34#
發(fā)表于 2025-3-27 11:46:30 | 只看該作者
35#
發(fā)表于 2025-3-27 15:15:14 | 只看該作者
36#
發(fā)表于 2025-3-27 20:28:10 | 只看該作者
https://doi.org/10.1007/978-3-7091-4328-5gular rational solutions have appeared with different names in a variety of nonlinear systems, say, algebraic solitons, algebraic solitrary waves and lump solutions etc. More importantly, these nonsingular rational solutions have played a key role in the study of rogue waves. In the paper, we will d
37#
發(fā)表于 2025-3-28 01:31:29 | 只看該作者
Basic Concepts of Functional Analysis,of the Gauss hypergeometric equation to produce the Kummer hypergeometric equation with an irregular singularity at infinity. We show how to pass from solutions with power-like behaviour which are analytic in disks, to solutions with exponential behaviour which are analytic in sectors and have diver
38#
發(fā)表于 2025-3-28 04:36:37 | 只看該作者
Foundations of the Theory of Parthooddratic vector fields). Kahan’s method has attracted much interest due to the fact that it preserves many of the geometrical properties of the original continuous system. In particular, a large number of Hamiltonian systems of quadratic vector fields are known for which their Kahan discretization is
39#
發(fā)表于 2025-3-28 09:09:24 | 只看該作者
40#
發(fā)表于 2025-3-28 10:33:36 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-23 10:40
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
长岭县| 武鸣县| 鲁山县| 渑池县| 新沂市| 合阳县| 新巴尔虎左旗| 招远市| 梧州市| 阜宁县| 福州市| 油尖旺区| 顺平县| 安龙县| 施甸县| 根河市| 吉林市| 江源县| 原阳县| 古田县| 凤阳县| 海宁市| 长沙市| 正阳县| 德惠市| 龙州县| 敖汉旗| 鄢陵县| 永顺县| 新津县| 融水| 哈密市| 革吉县| 锦州市| 巨鹿县| 花莲县| 行唐县| 壤塘县| 泗阳县| 文化| 博乐市|