找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic, Algebraic and Geometric Aspects of Integrable Systems; In Honor of Nalini J Frank Nijhoff,Yang Shi,Da-jun Zhang Conference proc

[復制鏈接]
樓主: Pessimistic
31#
發(fā)表于 2025-3-26 23:29:39 | 只看該作者
32#
發(fā)表于 2025-3-27 04:22:56 | 只看該作者
Springer Proceedings in Mathematics & Statisticshttp://image.papertrans.cn/b/image/163845.jpg
33#
發(fā)表于 2025-3-27 06:22:35 | 只看該作者
34#
發(fā)表于 2025-3-27 11:46:30 | 只看該作者
35#
發(fā)表于 2025-3-27 15:15:14 | 只看該作者
36#
發(fā)表于 2025-3-27 20:28:10 | 只看該作者
https://doi.org/10.1007/978-3-7091-4328-5gular rational solutions have appeared with different names in a variety of nonlinear systems, say, algebraic solitons, algebraic solitrary waves and lump solutions etc. More importantly, these nonsingular rational solutions have played a key role in the study of rogue waves. In the paper, we will d
37#
發(fā)表于 2025-3-28 01:31:29 | 只看該作者
Basic Concepts of Functional Analysis,of the Gauss hypergeometric equation to produce the Kummer hypergeometric equation with an irregular singularity at infinity. We show how to pass from solutions with power-like behaviour which are analytic in disks, to solutions with exponential behaviour which are analytic in sectors and have diver
38#
發(fā)表于 2025-3-28 04:36:37 | 只看該作者
Foundations of the Theory of Parthooddratic vector fields). Kahan’s method has attracted much interest due to the fact that it preserves many of the geometrical properties of the original continuous system. In particular, a large number of Hamiltonian systems of quadratic vector fields are known for which their Kahan discretization is
39#
發(fā)表于 2025-3-28 09:09:24 | 只看該作者
40#
發(fā)表于 2025-3-28 10:33:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 14:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
贵州省| 岳普湖县| 黑龙江省| 白河县| 泰和县| 阳东县| 永德县| 晋州市| 桑日县| 贺州市| 朝阳区| 永宁县| 彭山县| 大同县| 大足县| 自贡市| 金川县| 宜黄县| 迁安市| 英超| 应用必备| 车险| 巨鹿县| 福贡县| 紫云| 德昌县| 会理县| 河东区| 棋牌| 攀枝花市| 稻城县| 台州市| 肇庆市| 西和县| 铁岭市| 岑溪市| 定州市| 资中县| 保定市| 遂平县| 桐梓县|