找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Theory of Statistical Inference for Time Series; Masanobu Taniguchi,Yoshihide Kakizawa Book 2000 Springer Science+Business Medi

[復(fù)制鏈接]
樓主: Perforation
11#
發(fā)表于 2025-3-23 10:43:06 | 只看該作者
12#
發(fā)表于 2025-3-23 15:28:56 | 只看該作者
Lecture Notes in Computer Sciencestochastic processes will be reviewed. Because the statistical analysis for stochastic processes largely relies on the asymptotic theory, we also explain some useful limit theorems and central limit theorems. We have placed some fundamental results of mathematics, probability, and statistics in the Appendix.
13#
發(fā)表于 2025-3-23 22:05:04 | 只看該作者
Elements of Stochastic Processes,stochastic processes will be reviewed. Because the statistical analysis for stochastic processes largely relies on the asymptotic theory, we also explain some useful limit theorems and central limit theorems. We have placed some fundamental results of mathematics, probability, and statistics in the Appendix.
14#
發(fā)表于 2025-3-23 22:36:48 | 只看該作者
15#
發(fā)表于 2025-3-24 02:32:24 | 只看該作者
0172-7397 tion principle, and saddlepoint approximation. Because it is d- ifficult to use the exact distribution theory, the discussion is based on the asymptotic theory.978-1-4612-7028-7978-1-4612-1162-4Series ISSN 0172-7397 Series E-ISSN 2197-568X
16#
發(fā)表于 2025-3-24 09:21:51 | 只看該作者
Asymptotic Theory of Estimation and Testing for Stochastic Processes,odels and the asymptotic estimation theory based on the conditional least squares estimator and maximum likelihood estimator (MLE). We address the problem of statistical model selection in general fashion. Also the asymptotic theory for nonergodic models is mentioned. Recently much attention has bee
17#
發(fā)表于 2025-3-24 12:07:03 | 只看該作者
Asymptotic Theory for Long-Memory Processes,1968, 1969a, b)) claimed that Hurst’s findings could be modeled by them. Since then, a lot of probabilistic and statistical methods have been brought in long-memory processes (see Beran (1994a) and Robinson (1994a)). Interestingly, the illuminated results are often different from those for ordinary
18#
發(fā)表于 2025-3-24 17:57:57 | 只看該作者
19#
發(fā)表于 2025-3-24 22:28:11 | 只看該作者
20#
發(fā)表于 2025-3-25 02:36:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丁青县| 临清市| 蓬莱市| 固原市| 句容市| 宁安市| 平陆县| 澄迈县| 黄浦区| 荔浦县| 兴安县| 澄江县| 浪卡子县| 望谟县| 长顺县| 藁城市| 河北区| 三穗县| 绥中县| 东海县| 文山县| 襄垣县| 恩施市| 获嘉县| 佛坪县| 来安县| 柳江县| 桐梓县| 固安县| 巴彦淖尔市| 昌图县| 垦利县| 民权县| 东安县| 苍梧县| 汶川县| 永德县| 留坝县| 达尔| 略阳县| 宕昌县|