找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains; Volume I Vladimir Maz’ya,Serguei Nazarov,Boris A. Pl

[復(fù)制鏈接]
樓主: monster
31#
發(fā)表于 2025-3-27 00:18:38 | 只看該作者
32#
發(fā)表于 2025-3-27 02:42:10 | 只看該作者
On the Expressiveness and Complexity of ,onsider eigenvalues of polynomial operator pencils from the same point of view. Such problems arise in a natural way when we investigate singularities of solutions of boundary value problems in domains with conic points.
33#
發(fā)表于 2025-3-27 06:54:53 | 只看該作者
https://doi.org/10.1007/978-3-0348-8434-1Boundary value problem; Eigenvalue; Laplace operator; Partial differential equations; differential equat
34#
發(fā)表于 2025-3-27 10:08:36 | 只看該作者
978-3-0348-9565-1Birkh?user Verlag 2000
35#
發(fā)表于 2025-3-27 15:06:16 | 只看該作者
36#
發(fā)表于 2025-3-27 20:50:48 | 只看該作者
37#
發(fā)表于 2025-3-28 01:41:00 | 只看該作者
38#
發(fā)表于 2025-3-28 03:19:50 | 只看該作者
Asymptotic Behaviour of Energy Integrals for Small Perturbations of the Boundary Near Corners and Iss in smoothing of the boundary in a neighborhood of the singularity, and in the second case the isolated point is transformed into a small hole. Our aim is to derive and to justify mathematically asymptotic formulas for energy functionals applied to boundary value problems for systems which are elliptic in the sense of Douglis-Nirenberg.
39#
發(fā)表于 2025-3-28 08:25:26 | 只看該作者
40#
發(fā)表于 2025-3-28 11:02:56 | 只看該作者
Homogeneous Solutions of Boundary Value Problems in the Exterior of a Thin Coneonsider eigenvalues of polynomial operator pencils from the same point of view. Such problems arise in a natural way when we investigate singularities of solutions of boundary value problems in domains with conic points.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 08:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沙湾县| 出国| 雅安市| 淮安市| 阳江市| 湘乡市| 泉州市| 体育| 阳朔县| 揭阳市| 嫩江县| 沽源县| 修文县| 桓台县| 黑水县| 闸北区| 泾川县| 宝应县| 安陆市| 天镇县| 浦北县| 乌什县| 若尔盖县| 秀山| 弋阳县| 漾濞| 丹阳市| 汝州市| 盈江县| 和龙市| 得荣县| 勐海县| 土默特右旗| 青海省| 桐城市| 紫阳县| 吉木萨尔县| 延津县| 东明县| 射洪县| 碌曲县|