找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains; Volume I Vladimir Maz’ya,Serguei Nazarov,Boris A. Pl

[復(fù)制鏈接]
樓主: monster
11#
發(fā)表于 2025-3-23 10:20:33 | 只看該作者
0255-0156 of elliptic boundary value problems in singularly perturbed domains. This first volume is devoted to domains whose boundary is smooth in the neighborhood of finitely many conical points. In particular, the theory encompasses the important case of domains with small holes. The second volume, on the
12#
發(fā)表于 2025-3-23 16:40:38 | 只看該作者
13#
發(fā)表于 2025-3-23 20:01:47 | 只看該作者
14#
發(fā)表于 2025-3-24 00:42:49 | 只看該作者
Dirichlet and Neumann Problems for the Laplace Operator in Domains with Corners and Cone Verticesllustrates the general theory of elliptic boundary value problems in domains with cone vertices, which is briefly presented in Chapter 3. (Therefore we refrain from using expansions by the eigenfunctions of the Beltrami operator, which lead to the same results in the case of the Poisson equation.)
15#
發(fā)表于 2025-3-24 04:48:54 | 只看該作者
Elliptic Boundary Value Problems in Domains with Smooth Boundaries, in a Cylinder, and in Domains wis. However, in contrast to the first part we consider here general elliptic boundary value problems. The reader who is interested only in concrete problems of mathematical physics may restrict himself to a superficial reading of Chapters 3–5.
16#
發(fā)表于 2025-3-24 07:43:53 | 只看該作者
17#
發(fā)表于 2025-3-24 14:44:38 | 只看該作者
18#
發(fā)表于 2025-3-24 18:31:48 | 只看該作者
Martin Berger,Kohei Honda,Nobuko Yoshidain perturbed in the neighborhood of a corner. The necessary facts concerning behaviour of the solutions of problems of the theory of elasticity in a neighborhood of the sector vertex are put together in 8.5.
19#
發(fā)表于 2025-3-24 20:17:52 | 只看該作者
20#
發(fā)表于 2025-3-25 01:57:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 22:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
克拉玛依市| 龙井市| 牟定县| 葵青区| 玉门市| 嫩江县| 天柱县| 德化县| 拜城县| 芦溪县| 徐汇区| 南木林县| 白银市| 子长县| 那坡县| 榆中县| 濮阳县| 民和| 余姚市| 天全县| 太仆寺旗| 会宁县| 开阳县| 嵊州市| 南阳市| 玉树县| 嘉定区| 临猗县| 依兰县| 姜堰市| 射阳县| 上虞市| 灌云县| 兰考县| 宾阳县| 额济纳旗| 嘉善县| 阳城县| 新沂市| 舟山市| 诸城市|