找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II; Volume II Vladimir Maz’ya,Serguei Nazarov,

[復(fù)制鏈接]
樓主: Truman
11#
發(fā)表于 2025-3-23 11:18:03 | 只看該作者
12#
發(fā)表于 2025-3-23 16:09:06 | 只看該作者
13#
發(fā)表于 2025-3-23 18:44:15 | 只看該作者
General Elliptic Problems in Thin Domains, we provide compatibility conditions for the two first problems. In the general case, the role of the third limit problem can be played by a problem with small parameter by the derivatives of higher order, algebraic or differential equations on the boundary of a section, etc. (Section 16.3 contains the corresponding examples.)
14#
發(fā)表于 2025-3-23 22:27:34 | 只看該作者
15#
發(fā)表于 2025-3-24 04:54:17 | 只看該作者
16#
發(fā)表于 2025-3-24 07:43:52 | 只看該作者
Homogenization of a Differential Operator on a Fine Periodic Net of Curvesre-cloth. On its segments there are given some ordinary second order differential equations. At the nodes, the sum of the flows rates is equal to zero. Finally, we impose the homogeneous Dirichlet condition at the boundary points.
17#
發(fā)表于 2025-3-24 12:13:03 | 只看該作者
Operator Theory: Advances and Applicationshttp://image.papertrans.cn/b/image/163835.jpg
18#
發(fā)表于 2025-3-24 15:30:04 | 只看該作者
https://doi.org/10.1007/978-3-0348-8432-7Boundary value problem; Partial differential equations; difference equation; differential equation; diff
19#
發(fā)表于 2025-3-24 21:00:28 | 只看該作者
978-3-0348-9564-4Birkh?user Verlag 2000
20#
發(fā)表于 2025-3-25 00:31:28 | 只看該作者
A New Foundation for Finitary CorecursionIn this chapter we begin to study the asymptotics of solutions to elliptic problems in domains perturbed near multidimensional singularities of the boundary. As such singularities, one takes edges of various dimensions on the boundary of an n-dimensional domain Ω or smooth .-dimensional submanifolds within Ω, 1 ≤ . ≤ . — 2.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 06:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄大仙区| 宜川县| 江源县| 获嘉县| 伽师县| 通江县| 南陵县| 镇沅| 邮箱| 灵川县| 房山区| 海林市| 松原市| 普定县| 丰台区| 辽宁省| 宁化县| 汉寿县| 无极县| 修水县| 新邵县| 上林县| 昭苏县| 凉山| 南宫市| 成都市| 乌鲁木齐市| 聂荣县| 霍城县| 西昌市| 阿坝县| 鄢陵县| 阳春市| 韶山市| 三亚市| 北碚区| 琼海市| 宜川县| 方城县| 平乡县| 成都市|