找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Methods in Probability and Statistics with Applications; N. Balakrishnan,I. A. Ibragimov,V. B. Nevzorov Book 2001 Springer Scie

[復(fù)制鏈接]
樓主: Clientele
31#
發(fā)表于 2025-3-26 23:05:55 | 只看該作者
Time Reversal of Diffusion Processes in Hilbert Spaces and ManifoldsWe describe some results of the theory of diffusion processes in infinite dimensional Hilbert spaces and manifolds and apply them to investigation of invariant measures and time reversal of diffusion processes.
32#
發(fā)表于 2025-3-27 02:55:44 | 只看該作者
33#
發(fā)表于 2025-3-27 08:02:19 | 只看該作者
34#
發(fā)表于 2025-3-27 12:52:02 | 只看該作者
Long-Time Behavior of Multi-Particle Markovian ModelsWe find convergence time to equilibrium for wide classes of large multi-Particle Markovian systems. We show that if a “one-Particle” state space is large, then the long-time behavior of the multi-Particle Markovian system strongly depends on the type of stochastic evolution of a single Particle.
35#
發(fā)表于 2025-3-27 16:05:43 | 只看該作者
Applications of Infinite-Dimensional Gaussian IntegralsIn this chapter, the difference between an absolute moment of any Gaussian measure on the Hilbert space and the same moment of its projection onto some finite-dimensional subspace is evaluated.
36#
發(fā)表于 2025-3-27 19:41:31 | 只看該作者
37#
發(fā)表于 2025-3-28 00:01:10 | 只看該作者
38#
發(fā)表于 2025-3-28 04:23:21 | 只看該作者
A Local Limit Theorem for Stationary Processes in the Domain of Attraction of a Normal DistributionIn this chapter, we prove local limit theorems for Gibbs-Markov processes in the domain of attraction of normal distributions.
39#
發(fā)表于 2025-3-28 09:01:19 | 只看該作者
40#
發(fā)表于 2025-3-28 11:07:04 | 只看該作者
On Finite-Dimensional Archimedean Copulas necessary and sufficient conditions for the generators of Archimedean copulas and give some properties of degenerate finite dimensional Archimedean copulas. Some examples of degenerate finite dimensional Archimedean copulas are also represented.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南京市| 辉县市| 平远县| 台州市| 呼和浩特市| 利津县| 青川县| 印江| 凤城市| 淮南市| 金堂县| 久治县| 从江县| 临泽县| 思茅市| 房产| 甘洛县| 宾阳县| 桦川县| 贺兰县| 牡丹江市| 武威市| 衡阳市| 隆回县| 揭阳市| 东宁县| 西宁市| 四会市| 梅州市| 青铜峡市| 永靖县| 临沂市| 镇原县| 射洪县| 综艺| 张家口市| 木里| 永年县| 平果县| 苗栗市| 凭祥市|