找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Characteristics of Entire Functions and Their Applications in Mathematics and Biophysics; L. S. Maergoiz Book 2003Latest editio

[復(fù)制鏈接]
樓主: injurious
11#
發(fā)表于 2025-3-23 13:01:33 | 只看該作者
Klaus-Dieter Schewe,Bernhard Thalheim sign. In particular, it will be shown that in the case of a finite indicator . of general form the locally convex arc Γ. (see Def. 1.9.24) associated with . is the image of a closed Jordan arc . ? ? under a mapping of the form
12#
發(fā)表于 2025-3-23 14:46:16 | 只看該作者
13#
發(fā)表于 2025-3-23 21:03:03 | 只看該作者
14#
發(fā)表于 2025-3-24 02:13:15 | 只看該作者
Xudong Liu,Miroslaw Truszczynskimaximum .. of its modulus, the maximal term .., the Nevanlinna characteristic .(., .),etc. These functions and the logarithms of the first two belong to the class U (see Property 6.1.2); so, the results of Chapter 6 are applicable. For instance, the growth scales for the classes M. and N. considered
15#
發(fā)表于 2025-3-24 03:14:20 | 只看該作者
16#
發(fā)表于 2025-3-24 08:26:10 | 只看該作者
Mathematics and Its Applicationshttp://image.papertrans.cn/b/image/163792.jpg
17#
發(fā)表于 2025-3-24 14:45:23 | 只看該作者
Flavio A. Ferrarotti,José M. Turull TorresLet A = {φ(t)} be the class of nonnegative monotone nondecreasing functions defined on the semiaxis . ≥ 0. We consider basic concepts associated with the simplest growth scale for Λ (a . is a set of functions, which are used to measure the growth).
18#
發(fā)表于 2025-3-24 17:05:53 | 只看該作者
19#
發(fā)表于 2025-3-24 21:14:36 | 只看該作者
A Method of Identifying Homeostasis Relaxation Characteristics,stem parameters (“variables”) after an external impact. Provided the changes in the systems are not pathological, the variables either regain their original levels or pass to new (adaptation) levels. A glowing example of this is homeostasis systems of living organisms. It is well known that homeosta
20#
發(fā)表于 2025-3-25 02:49:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖江市| 万荣县| 南靖县| 巨野县| 汤阴县| 明星| 周至县| 邵东县| 庆元县| 托克托县| 寻甸| 沾益县| 沾化县| 崇左市| 体育| 讷河市| 姜堰市| 奉贤区| 巴东县| 拉萨市| 凉山| 边坝县| 二连浩特市| 塔河县| 佛冈县| 岐山县| 双桥区| 宜宾市| 同仁县| 临西县| 密山市| 惠东县| 都江堰市| 抚顺县| 全南县| 桃江县| 涡阳县| 武隆县| 修水县| 永顺县| 钟祥市|