找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Analysis of Unstable Solutions of Stochastic Differential Equations; Grigorij Kulinich,Svitlana Kushnirenko,Yuliya Mish Book 20

[復(fù)制鏈接]
樓主: 存貨清單
21#
發(fā)表于 2025-3-25 06:58:46 | 只看該作者
https://doi.org/10.1007/978-3-030-41291-3Stochastic differential equation; Asymptotic behavior of solution; Nonregular dependence on parameter;
22#
發(fā)表于 2025-3-25 10:26:23 | 只看該作者
23#
發(fā)表于 2025-3-25 15:19:35 | 只看該作者
24#
發(fā)表于 2025-3-25 17:19:47 | 只看該作者
25#
發(fā)表于 2025-3-25 22:08:30 | 只看該作者
26#
發(fā)表于 2025-3-26 00:39:39 | 只看該作者
27#
發(fā)表于 2025-3-26 07:34:46 | 只看該作者
,Asymptotic Behavior of Homogeneous Additive Functionals Defined on the Solutions of It? SDEs with Ndevoted to asymptotic behavior of the integral functionals of martingale type. The explicit form of the limiting processes for ..(.) is established in Sect. 5.6 under very non-regular dependence of .. and .. on the parameter .. This section summarizes the main results and their proofs. Section 5.7 c
28#
發(fā)表于 2025-3-26 09:46:18 | 只看該作者
Convergence of Unstable Solutions of SDEs to Homogeneous Markov Processes with Discontinuous Transiefficients of the equations leading to instability of the solutions are established in Sect. 2.1. Necessary and sufficient conditions for the weak convergence of the stochastically unstable solutions to a Brownian motion in two-layer environment are formulated and proved in Sect. 2.2. Necessary and
29#
發(fā)表于 2025-3-26 14:07:25 | 只看該作者
Asymptotic Analysis of Equations with Ergodic and Stochastically Unstable Solutions,een equations whose solutions have ergodic distribution, and equations with stochastically unstable solutions. To simplify calculations and to visualize better the influence of the drift coefficient of the equation on the asymptotic behavior of solution, we consider Eq. (.) with .. Statements about
30#
發(fā)表于 2025-3-26 16:49:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 02:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临海市| 西充县| 垫江县| 通河县| 昔阳县| 北海市| 田林县| 福清市| 南乐县| 河曲县| 江永县| 朝阳市| 宜兴市| 梁河县| 上虞市| 金门县| 翁牛特旗| 新泰市| 咸丰县| 宁国市| 集贤县| 彩票| 聂拉木县| 沈阳市| 磴口县| 闽侯县| 绵竹市| 武山县| 昌宁县| 山阴县| 峨眉山市| 金沙县| 河北省| 南木林县| 麻栗坡县| 巴中市| 利川市| 富源县| 阳谷县| 渭源县| 疏勒县|