找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Analysis; J. D. Murray Textbook 1984 Springer Science+Business Media New York 1984 Approximation.Asymptotische Darstellung.Diff

[復(fù)制鏈接]
查看: 23974|回復(fù): 36
樓主
發(fā)表于 2025-3-21 17:54:05 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Asymptotic Analysis
影響因子2023J. D. Murray
視頻videohttp://file.papertrans.cn/164/163771/163771.mp4
學(xué)科分類Applied Mathematical Sciences
圖書封面Titlebook: Asymptotic Analysis;  J. D. Murray Textbook 1984 Springer Science+Business Media New York 1984 Approximation.Asymptotische Darstellung.Diff
影響因子.From the reviews.: "A good introduction to a subject important for its capacity to circumvent theoretical and practical obstacles, and therefore particularly prized in the applications of mathematics. The book presents a balanced view of the methods and their usefulness: integrals on the real line and in the complex plane which arise in different contexts, and solutions of differential equations not expressible as integrals. Murray includes both historical remarks and references to sources or other more complete treatments. More useful as a guide for self-study than as a reference work, it is accessible to any upperclass mathematics undergraduate. Some exercises and a short bibliography included. Even with E.T. Copson‘s .Asymptotic . .Expansions. or N.G. de Bruijn‘s .Asymptotic Methods in . .Analysis. (1958), any academic library would do well to have this excellent introduction." (.S. Puckette, University of . .the South.) #.Choice Sept. 1984.#1
Pindex Textbook 1984
The information of publication is updating

書目名稱Asymptotic Analysis影響因子(影響力)




書目名稱Asymptotic Analysis影響因子(影響力)學(xué)科排名




書目名稱Asymptotic Analysis網(wǎng)絡(luò)公開度




書目名稱Asymptotic Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Asymptotic Analysis被引頻次




書目名稱Asymptotic Analysis被引頻次學(xué)科排名




書目名稱Asymptotic Analysis年度引用




書目名稱Asymptotic Analysis年度引用學(xué)科排名




書目名稱Asymptotic Analysis讀者反饋




書目名稱Asymptotic Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:09:49 | 只看該作者
Foundations of Differential Calculusean one that is given in terms of functions whose properties are known or tabulated: Bessel functions, trigonometric functions, Legendre functions, exponentials, and so on are typical examples. Such a solution may not be particularly useful, however, from either a computational or analytical point o
板凳
發(fā)表于 2025-3-22 01:23:30 | 只看該作者
地板
發(fā)表于 2025-3-22 08:01:07 | 只看該作者
5#
發(fā)表于 2025-3-22 09:32:58 | 只看該作者
Foundations of Differential Calculuspansions are sought as λ → ∞. It should be said here that if .(.) and .(.) can be suitably analytically continued off the real axis then the class of integrals (4.1) can be treated, as discussed briefly below, by the method of steepest descents in §3.1. However, the original method of stationary pha
6#
發(fā)表于 2025-3-22 15:29:13 | 只看該作者
Foundations of Differential Calculusvolves, in general, the evaluation of integrals of the form.where . is real, .(.) is some given kernel, a function of two variables z and ., C is a given finite or infinite contour in the complex z-plane, and .(.) is known, or at least its singularity properties are given. Here the function .(.) is
7#
發(fā)表于 2025-3-22 17:46:50 | 只看該作者
8#
發(fā)表于 2025-3-22 21:18:05 | 只看該作者
9#
發(fā)表于 2025-3-23 03:26:10 | 只看該作者
https://doi.org/10.1007/978-1-4612-1122-8Approximation; Asymptotische Darstellung; Differentialgleichung; differential equation; integral; perturb
10#
發(fā)表于 2025-3-23 09:04:04 | 只看該作者
978-1-4612-7015-7Springer Science+Business Media New York 1984
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 05:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遵化市| 淳化县| 永仁县| 扶沟县| 鹤峰县| 名山县| 手机| 凉山| 乌拉特后旗| 巍山| 镇江市| 肥城市| 甘肃省| 修水县| 东阳市| 都安| 达州市| 常德市| 垦利县| 江川县| 宁明县| 福建省| 乌什县| 南安市| 澎湖县| 滁州市| 嘉义市| 南澳县| 巴彦淖尔市| 富源县| 托克逊县| 敦煌市| 莆田市| 汉寿县| 关岭| 永川市| 宁强县| 桃源县| 南木林县| 福建省| 南召县|