找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Asymptotic Analysis; From Theory to Appli Ferdinand Verhulst Conference proceedings 1979 Springer-Verlag Berlin Heidelberg 1979 Analysis.As

[復(fù)制鏈接]
樓主: Denial
41#
發(fā)表于 2025-3-28 17:44:54 | 只看該作者
On matching principles,recall the principal results which have been obtained to match asymptotic expansions of a singular function; these classical results are based on Kaplun‘s extension theorem. After Kaplun and Fraenkel, most of the results are from W. Eckhaus; in fact, he was the first to say clearly that matching is
42#
發(fā)表于 2025-3-28 20:28:58 | 只看該作者
43#
發(fā)表于 2025-3-29 02:17:55 | 只看該作者
Feed-back control of singularly perturbed heating problems, ↓ 0 and to which a feed-back control mechanism is applied based on the observation of temperature in a finite number of points. Some results are given concerning the following subjects:.If relevant the obtained results are interpreted in terms of the physics of the problem. Moreover for some exampl
44#
發(fā)表于 2025-3-29 06:15:13 | 只看該作者
45#
發(fā)表于 2025-3-29 07:35:54 | 只看該作者
46#
發(fā)表于 2025-3-29 15:07:32 | 只看該作者
Asymptotic approximations in magneto-hydrcdynamic singular perturbation problems,allel to one pair of the sides and perpendicular to the axis of the pipe, when the Hartman number M is large. For the problem for the dimensionless induced magnetic field and the velocity (both parallel to the axis of the pipe) formal asymptotic approximations of the solution for ε=(2M). ↓ 0 are con
47#
發(fā)表于 2025-3-29 16:39:37 | 只看該作者
48#
發(fā)表于 2025-3-29 23:17:41 | 只看該作者
Asymptotic methods for the Volterra-Lotka equations,ll and large amplitude oscillations. A more extensive analysis is given for the case where one of the equations contains a small parameter. Our analysis of such a singularly perturbed type of Volterra-Lotka system leads to an asymptotic formula of the period for oscillations with moderate and large
49#
發(fā)表于 2025-3-30 00:14:41 | 只看該作者
50#
發(fā)表于 2025-3-30 04:37:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 21:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄大仙区| 永胜县| 洛隆县| 汉川市| 兴山县| 黄石市| 黑山县| 肇东市| 六盘水市| 江津市| 凤凰县| 灌阳县| 澄迈县| 怀来县| 电白县| 博湖县| 怀柔区| 江达县| 庄浪县| 昌江| 康乐县| 鱼台县| 高邑县| 德安县| 江门市| 中江县| 舒城县| 梓潼县| 彰化市| 台中县| 德兴市| 宝应县| 龙里县| 巴楚县| 娄底市| 青州市| 马鞍山市| 张家港市| 延长县| 娱乐| 连平县|