找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Astrophysical Radiation Hydrodynamics; Karl-Heiz A. Winkler,Michael L. Norman Book 1986 D. Reidel Publishing Company, Dordrecht, Holland 1

[復(fù)制鏈接]
樓主: graphic
11#
發(fā)表于 2025-3-23 11:28:11 | 只看該作者
12#
發(fā)表于 2025-3-23 17:35:32 | 只看該作者
Particle Methodsarticle methods relate to other approaches (finite difference, finite element and spectral methods) and survey particle methods. Sections 2, 3 and 4 focus respectively on particle-mesh (PM) methods for collisionless systems, particle-particle/particle-mesh (P.m) methods for correlated systems and fl
13#
發(fā)表于 2025-3-23 21:16:40 | 只看該作者
Why Ultrarelativistic Numerical Hydrodynamics is Difficultn. The numerical code is an adaptation of the WH80s Newtonian radiation hydrodynamics code described by Winkler and Norman in these proceedings. Shock fronts are treated by the method of artificial viscosity. We derive the equations of motion for an ideal gas with artificial viscosity in Eulerian an
14#
發(fā)表于 2025-3-23 22:23:39 | 只看該作者
Neutrino Transport in Relativity black holes. It uses a Lagrangian hydrodynamic formulation as a framework. The method is of mediocre accuracy, but it can handle all cases efficiently. The second method of solving the transport equation is for use in cosmology. In this case all velocities are of the same size and an explicit monot
15#
發(fā)表于 2025-3-24 04:26:31 | 只看該作者
Numerical Relativistic Gravitational Collapse with Spatial Time Slices while the Lagrangian observer is one at rest in the fluid. We can define an observer at an event in spacetime by giving his 4-velocity at that event. The path through spacetime taken by the observer is called the timeline of that observer. In flat Minkowski spacetime (the spacetime of special relat
16#
發(fā)表于 2025-3-24 08:18:56 | 只看該作者
17#
發(fā)表于 2025-3-24 11:58:52 | 只看該作者
18#
發(fā)表于 2025-3-24 17:57:01 | 只看該作者
https://doi.org/10.1007/978-1-4302-0158-8. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangean formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each
19#
發(fā)表于 2025-3-24 21:12:19 | 只看該作者
20#
發(fā)表于 2025-3-25 00:15:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 14:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会理县| 黎平县| 仁寿县| 孟津县| 义乌市| 常山县| 永川市| 南部县| 湘乡市| 襄樊市| 杭锦后旗| 西乌珠穆沁旗| 社旗县| 大田县| 陇南市| 德安县| 剑川县| 永顺县| 新竹市| 德兴市| 谢通门县| 淄博市| 翁源县| 大连市| 胶南市| 荆州市| 余庆县| 拉孜县| 柳河县| 太仆寺旗| 晋江市| 石狮市| 灯塔市| 抚远县| 锦州市| 平安县| 青川县| 万全县| 东乌| 米脂县| 大荔县|