找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Associative and Non-Associative Algebras and Applications; 3rd MAMAA, Chefchaou Mercedes Siles Molina,Laiachi El Kaoutit,Mohamed B Conferen

[復(fù)制鏈接]
樓主: Deflated
41#
發(fā)表于 2025-3-28 18:09:39 | 只看該作者
42#
發(fā)表于 2025-3-28 19:26:59 | 只看該作者
43#
發(fā)表于 2025-3-29 01:11:25 | 只看該作者
Semi-ring Based Gr?bner–Shirshov Bases over a Noetherian Valuation Ringing rather in a monoid. In this paper, we study Gr?bner–Shirshov bases where the monomials are in a semi-ring and the coefficients are in a noetherian valuation ring and we establish the relation between weak and strong Gr?bner bases.
44#
發(fā)表于 2025-3-29 06:49:36 | 只看該作者
Conference proceedings 2020ouen, Morocco, April 12-14, 2018, and which reflects the mathematical collaboration between south European and north African countries, mainly France, Spain, Morocco, Tunisia and Senegal. The book is divided in three parts and features contributions from the following fields: algebraic and analytic
45#
發(fā)表于 2025-3-29 08:06:04 | 只看該作者
46#
發(fā)表于 2025-3-29 14:29:18 | 只看該作者
https://doi.org/10.1007/978-1-4757-3184-2 the automorphisms having the property of extension, in the category of abelian groups. Let . be an integral bounded factorization domain and . a direct sum of cyclic torsion-free modules over .. This work aims to prove that the automorphisms of . that satisfy the property of the extension are none other than the homotheties of invertible ratio.
47#
發(fā)表于 2025-3-29 16:44:38 | 只看該作者
The Extension Property in the Category of Direct Sum of Cyclic Torsion-Free Modules over a BFD the automorphisms having the property of extension, in the category of abelian groups. Let . be an integral bounded factorization domain and . a direct sum of cyclic torsion-free modules over .. This work aims to prove that the automorphisms of . that satisfy the property of the extension are none other than the homotheties of invertible ratio.
48#
發(fā)表于 2025-3-29 21:19:19 | 只看該作者
49#
發(fā)表于 2025-3-30 00:39:52 | 只看該作者
50#
發(fā)表于 2025-3-30 05:45:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 06:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伊通| 平乡县| 吴川市| 固原市| 东方市| 江油市| 万源市| 池州市| 百色市| 乳源| 阿城市| 太谷县| 定安县| 四平市| 沙坪坝区| 麦盖提县| 屯昌县| 徐州市| 赤水市| 台东市| 如皋市| 黄陵县| 曲阳县| 崇义县| 元谋县| 崇文区| 阿拉善盟| 沙坪坝区| 万源市| 永福县| 广元市| 常宁市| 会同县| 兴安县| 尉氏县| 桑植县| 绥宁县| 莒南县| 东海县| 大冶市| 淮北市|