找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Associative Digital Network Theory; An Associative Algeb Nico F. Benschop Book Apr 2009Latest edition Springer Science+Business Media B.V.

[復(fù)制鏈接]
樓主: FARCE
41#
發(fā)表于 2025-3-28 17:00:32 | 只看該作者
https://doi.org/10.1007/3-540-36135-9idues mod .. with ‘carry’ .<.. of weight .. yields a Euclidean prime sieve for integers. Failure of Goldbach’s Conjecture?(.) for some 2. contradicts .(.) for some?., yielding?.: Each 2.>4 is the sum of two odd primes.
42#
發(fā)表于 2025-3-28 21:53:29 | 只看該作者
43#
發(fā)表于 2025-3-29 01:07:06 | 只看該作者
Simple Semigroups and the Five Basic Machines,ch input and input-sequence maps the state set onto the same number of next states. CR-machines are analysed by their sequential closure (semigroup), which is shown to be a ., that is: a semi-direct product .?|>(.×.) of a left- and a right-copy semigroup, and a group. So in general a CR-machine is a
44#
發(fā)表于 2025-3-29 06:18:20 | 只看該作者
45#
發(fā)表于 2025-3-29 10:46:27 | 只看該作者
46#
發(fā)表于 2025-3-29 13:06:34 | 只看該作者
47#
發(fā)表于 2025-3-29 19:25:59 | 只看該作者
48#
發(fā)表于 2025-3-29 21:47:19 | 只看該作者
,Fermat’s Small Theorem Extended to?,,mod?,,,. are shown to have distinct .. mod .., and divisors . of .?1 (resp. .+1) with different primesets have distinct .. mod ... Moreover 2.?2 ?mod .. for prime?., related to . primes (Wieferich in J. Reine Angew. Math. 136:293–302, .) and . case. for integers (Chap.?8). .: Some .|.±1 is semi primitive r
49#
發(fā)表于 2025-3-30 02:16:54 | 只看該作者
50#
發(fā)表于 2025-3-30 05:32:32 | 只看該作者
,Additive Structure of ,(.) mod ,, (Squarefree) and Goldbach’s Conjecture, All primes between .. and .. are in the group .. of units in semigroup?. of multiplication mod?... Due to its squarefree modulus . is a disjoint union of 2. groups, with as many idempotents—one per divisor of?.., which form a Boolean lattice .. The . properties of . and its lattice are studied. It
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 23:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江城| 霞浦县| 长寿区| 南宫市| 全椒县| 仁怀市| 左云县| 扶绥县| 白朗县| 岐山县| 阿拉善右旗| 乌拉特后旗| 香港| 阜南县| 吉木萨尔县| 遂昌县| 乐昌市| 朝阳区| 岳阳市| 彰武县| 宁乡县| 两当县| 根河市| 迁安市| 玉门市| 阿城市| 济源市| 务川| 黎平县| 金秀| 绥中县| 广安市| 东宁县| 临武县| 德令哈市| 龙泉市| 怀宁县| 哈尔滨市| 亚东县| 镇沅| 三河市|