找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Associahedra, Tamari Lattices and Related Structures; Tamari Memorial Fest Folkert Müller-Hoissen,Jean Marcel Pallo,Jim Stash Book 2012 Spr

[復(fù)制鏈接]
樓主: SORB
51#
發(fā)表于 2025-3-30 11:59:14 | 只看該作者
52#
發(fā)表于 2025-3-30 15:55:52 | 只看該作者
53#
發(fā)表于 2025-3-30 16:58:35 | 只看該作者
54#
發(fā)表于 2025-3-30 21:01:34 | 只看該作者
55#
發(fā)表于 2025-3-31 02:33:22 | 只看該作者
56#
發(fā)表于 2025-3-31 06:06:55 | 只看該作者
Partial Groupoid Embeddings in Semigroups,upoid and the Gensemer/Weinert equidivisible partial groupoid, provided they satisfy an additional axiom, weak associativity. Both structures share the one mountain property. More embedding results for partial groupoids into other types of algebraic structures are presented as well.
57#
發(fā)表于 2025-3-31 12:14:37 | 只看該作者
,Moduli Spaces of Punctured Poincaré Disks,ce of such associativity. We consider a natural generalization by considering the moduli space of marked particles on the Poincaré disk, extending Tamari’s notion of associativity based on nesting. A geometric and combinatorial construction of this space is provided, which appears in Kontsevich’s de
58#
發(fā)表于 2025-3-31 15:48:53 | 只看該作者
59#
發(fā)表于 2025-3-31 21:33:44 | 只看該作者
Tamari Lattices and the Symmetric Thompson Monoid,noid .whose Cayley graph includes all Tamari lattices. Under this correspondence, the Tamari lattice meet and join are the counterparts of the least common multiple and greatest common divisor operations in .. As an application, we show that, for every ., there exists a length . chain in the .th Tam
60#
發(fā)表于 2025-3-31 22:39:04 | 只看該作者
Parenthetic Remarks,ess is an important aspect. The free structures are described in various ways using wellformed words (in the spirit of some of Tamari’s papers), using string diagrams leading to forests, and in terms of rewrite rules.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柳河县| 洞头县| 肇州县| 太康县| 垫江县| 仙居县| 麻城市| 绍兴县| 乌鲁木齐县| 罗田县| 玉溪市| 连南| 永登县| 潞西市| 镇宁| 卓尼县| 乌兰县| 肇庆市| 大兴区| 张家口市| 周宁县| 闸北区| 嘉义市| 古田县| 孟津县| 涿鹿县| 丰镇市| 屯留县| 舒兰市| 平安县| 康马县| 六枝特区| 英山县| 莱芜市| 望城县| 清河县| 自贡市| 黑山县| 石景山区| 淳化县| 偃师市|