找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Associahedra, Tamari Lattices and Related Structures; Tamari Memorial Fest Folkert Müller-Hoissen,Jean Marcel Pallo,Jim Stash Book 2012 Spr

[復(fù)制鏈接]
樓主: SORB
11#
發(fā)表于 2025-3-23 10:58:44 | 只看該作者
12#
發(fā)表于 2025-3-23 16:18:14 | 只看該作者
Book 2012on to topical research related to Tamari‘s work and ideas. Most of the articles collected in it are written in a way accessible to a wide audience of students and researchers in mathematics and mathematical physics and are accompanied by high quality illustrations. .
13#
發(fā)表于 2025-3-23 20:06:51 | 只看該作者
Formal Models of Communicating Systems 312-avoiding permutations, by recovering the proof of the fact that they are isomorphic to the Tamari and the Dyck order, respectively; our proof, which simplifies the existing ones, relies on our results on series parallel interval orders.
14#
發(fā)表于 2025-3-24 01:19:16 | 只看該作者
15#
發(fā)表于 2025-3-24 04:15:12 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/b/image/163496.jpg
16#
發(fā)表于 2025-3-24 07:22:47 | 只看該作者
17#
發(fā)表于 2025-3-24 11:38:28 | 只看該作者
Formal Models in the Study of Languageupoid and the Gensemer/Weinert equidivisible partial groupoid, provided they satisfy an additional axiom, weak associativity. Both structures share the one mountain property. More embedding results for partial groupoids into other types of algebraic structures are presented as well.
18#
發(fā)表于 2025-3-24 15:31:38 | 只看該作者
A Feature-Based Account of Weak Islandsce of such associativity. We consider a natural generalization by considering the moduli space of marked particles on the Poincaré disk, extending Tamari’s notion of associativity based on nesting. A geometric and combinatorial construction of this space is provided, which appears in Kontsevich’s de
19#
發(fā)表于 2025-3-24 21:16:19 | 只看該作者
20#
發(fā)表于 2025-3-25 01:47:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南木林县| 星子县| 阜南县| 玉环县| 阿坝县| 丘北县| 开封市| 民勤县| 贺兰县| 沿河| 浪卡子县| 楚雄市| 柳州市| 伊金霍洛旗| 克山县| 板桥市| 佛山市| 张家港市| 塔河县| 鞍山市| 略阳县| 乐陵市| 高邑县| 益阳市| 河曲县| 改则县| 大田县| 卓资县| 保靖县| 新巴尔虎右旗| 佛学| 洪雅县| 青海省| 靖西县| 宁河县| 宜川县| 河津市| 遂川县| 广安市| 应用必备| 克什克腾旗|