找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Aspects of Boundary Problems in Analysis and Geometry; Juan Gil,Thomas Krainer,Ingo Witt Book 2004 Springer Basel AG 2004 Boundary value p

[復(fù)制鏈接]
樓主: Dangle
31#
發(fā)表于 2025-3-26 22:59:27 | 只看該作者
0255-0156 ps: ..- analysis and geometry of geometric operators and their index theory..- elliptic theory of boundary value problems and the Shapiro-Lopatinsky condition.978-3-0348-9595-8978-3-0348-7850-0Series ISSN 0255-0156 Series E-ISSN 2296-4878
32#
發(fā)表于 2025-3-27 05:08:34 | 只看該作者
33#
發(fā)表于 2025-3-27 07:57:05 | 只看該作者
34#
發(fā)表于 2025-3-27 11:33:57 | 只看該作者
35#
發(fā)表于 2025-3-27 15:48:14 | 只看該作者
36#
發(fā)表于 2025-3-27 21:27:06 | 只看該作者
37#
發(fā)表于 2025-3-27 23:51:08 | 只看該作者
Book 2004tive as well as reports on current research. ..The collection splits into two related groups: ..- analysis and geometry of geometric operators and their index theory..- elliptic theory of boundary value problems and the Shapiro-Lopatinsky condition.
38#
發(fā)表于 2025-3-28 02:38:03 | 只看該作者
https://doi.org/10.1007/BFb0079799in suitable scales of spaces: Sobolev spaces on . plus closed subspaces of Sobolev spaces on Y which are the range of corresponding pseudo-differential projections. Moreover, we express parametrices of elliptic elements within our algebra and discuss spectral boundary value problems for differential operators.
39#
發(fā)表于 2025-3-28 07:43:03 | 只看該作者
Oscar E. Lanford,Michael Yampolskytion of the non-homogeneous Dirichlet problem in this setting. We also prove the existence of the Dirichlet-toNeumann map in the class of pseudodifferential operators which are “almost translation invariant at infinity.”
40#
發(fā)表于 2025-3-28 13:41:42 | 只看該作者
Aspects of Boundary Problems in Analysis and Geometry
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 03:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武威市| 平利县| 潍坊市| 临猗县| 冀州市| 宜州市| 阿拉善左旗| 新宾| 安溪县| 南乐县| 会昌县| 明水县| 宝应县| 班戈县| 内黄县| 武乡县| 仁布县| 会昌县| 玛曲县| 长垣县| 墨竹工卡县| 北京市| 田东县| 安泽县| 百色市| 慈溪市| 噶尔县| 鹿泉市| 阳朔县| 陇西县| 阿尔山市| 宁陕县| 黄骅市| 德化县| 灵山县| 桐梓县| 鄂尔多斯市| 阿合奇县| 确山县| 九寨沟县| 玛沁县|