找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks - ICANN 96; 6th International Co Christoph Malsburg,Werner Seelen,Bernhard Sendhoff Conference proceedings 1996

[復(fù)制鏈接]
查看: 38485|回復(fù): 60
樓主
發(fā)表于 2025-3-21 16:05:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Neural Networks - ICANN 96
期刊簡稱6th International Co
影響因子2023Christoph Malsburg,Werner Seelen,Bernhard Sendhoff
視頻videohttp://file.papertrans.cn/163/162703/162703.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Neural Networks - ICANN 96; 6th International Co Christoph Malsburg,Werner Seelen,Bernhard Sendhoff Conference proceedings 1996
影響因子This book constitutes the refereed proceedings of the sixth International Conference on Artificial Neural Networks - ICANN 96, held in Bochum, Germany in July 1996..The 145 papers included were carefully selected from numerous submissions on the basis of at least three reviews; also included are abstracts of the six invited plenary talks. All in all, the set of papers presented reflects the state of the art in the field of ANNs. Among the topics and areas covered are a broad spectrum of theoretical aspects, applications in various fields, sensory processing, cognitive science and AI, implementations, and neurobiology.
Pindex Conference proceedings 1996
The information of publication is updating

書目名稱Artificial Neural Networks - ICANN 96影響因子(影響力)




書目名稱Artificial Neural Networks - ICANN 96影響因子(影響力)學(xué)科排名




書目名稱Artificial Neural Networks - ICANN 96網(wǎng)絡(luò)公開度




書目名稱Artificial Neural Networks - ICANN 96網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Neural Networks - ICANN 96被引頻次




書目名稱Artificial Neural Networks - ICANN 96被引頻次學(xué)科排名




書目名稱Artificial Neural Networks - ICANN 96年度引用




書目名稱Artificial Neural Networks - ICANN 96年度引用學(xué)科排名




書目名稱Artificial Neural Networks - ICANN 96讀者反饋




書目名稱Artificial Neural Networks - ICANN 96讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:28:38 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:38:04 | 只看該作者
Autoassociative memory with high storage capacity,y with the number of inputs per neuron is far greater than the linear growth in the famous Hopfield network [2]. This paper shows that the GNU attains an even higher capacity with the use of pyramids of neurons instead of single neurons as its nodes. The paper also shows that the storage capacity/co
地板
發(fā)表于 2025-3-22 06:35:42 | 只看該作者
5#
發(fā)表于 2025-3-22 08:51:14 | 只看該作者
6#
發(fā)表于 2025-3-22 15:54:22 | 只看該作者
7#
發(fā)表于 2025-3-22 21:04:45 | 只看該作者
Bayesian inference of noise levels in regression,puts, together with additive Gaussian noise having constant variance. The use of maximum likelihood to train such models then corresponds to the minimization of a sum-of-squares error function. In many applications a more realistic model would allow the noise variance itself to depend on the input v
8#
發(fā)表于 2025-3-22 23:47:45 | 只看該作者
Complexity reduction in probabilistic neural networks,tionally prohibitive, as all training data need to be stored and each individual training vector gives rise to a new term of the estimate. Given an original training sample of size . in a .-dimensional space, a simple binned kernel estimate with .+4) terms can be shown to attain an estimation accura
9#
發(fā)表于 2025-3-23 02:03:10 | 只看該作者
10#
發(fā)表于 2025-3-23 05:36:24 | 只看該作者
Regularization by early stopping in single layer perceptron training,scriminant function. On the way between these two classifiers one has a regularized discriminant analysis. That is equivalent to the “weight decay” regularization term added to the cost function. Thus early stopping plays a role of regularization of the network.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 06:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌恰县| 博罗县| 务川| 孟州市| 全椒县| 临汾市| 蒙城县| 禹州市| 海淀区| 岳普湖县| 玉田县| 吴忠市| 万宁市| 金坛市| 绥阳县| 门头沟区| 梁河县| 左云县| 汉源县| 阿克陶县| 海兴县| 通辽市| 杨浦区| 台山市| 门源| 海阳市| 西乡县| 松潘县| 云和县| 麻城市| 许昌市| 静乐县| 白城市| 桦川县| 清水河县| 河津市| 孟州市| 晋城| 石嘴山市| 延安市| 邓州市|