找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks - ICANN 2010; 20th International C Konstantinos Diamantaras,Wlodek Duch,Lazaros S. Il Conference proceedings 201

[復制鏈接]
樓主: Reagan
51#
發(fā)表于 2025-3-30 11:31:49 | 只看該作者
Analyzing Classification Methods in Multi-label Tasksnnotation of images. This paper presents a comparative analysis of some existing multi-label classification methods applied to different domains. The main aim of this analysis is to evaluate the performance of such methods in different tasks and using different evaluation metrics.
52#
發(fā)表于 2025-3-30 14:27:28 | 只看該作者
Fiber Parameter Studies with the OTDRs has been done, but with cost functions that scale quadratically. Training a bottleneck classifier scales linearly, but still gives results comparable to or sometimes better than two earlier supervised methods.
53#
發(fā)表于 2025-3-30 18:00:19 | 只看該作者
J. J. Mecholsky,S. W. Freiman,S. M. Moreyexpression microarray datasets of different kinds of cancer. A comparative study with other classifiers such as Support Vector Machine (SVM), C4.5, na?ve Bayes and k-Nearest Neighbor is performed. Our approach shows excellent results outperforming all other classifiers.
54#
發(fā)表于 2025-3-31 00:02:37 | 只看該作者
https://doi.org/10.1007/978-3-662-52764-1The quality of the predictor is tested on a large test set of eye movement data and compared with the performance of two state-of-the-art saliency models on this data set. The proposed model demonstrates significant improvement – mean ROC score of 0.665 – over the selected baseline models with ROC scores of 0.625 and 0.635.
55#
發(fā)表于 2025-3-31 01:14:53 | 只看該作者
56#
發(fā)表于 2025-3-31 05:10:42 | 只看該作者
57#
發(fā)表于 2025-3-31 11:39:37 | 只看該作者
58#
發(fā)表于 2025-3-31 14:21:09 | 只看該作者
Deep Bottleneck Classifiers in Supervised Dimension Reductions has been done, but with cost functions that scale quadratically. Training a bottleneck classifier scales linearly, but still gives results comparable to or sometimes better than two earlier supervised methods.
59#
發(fā)表于 2025-3-31 19:15:53 | 只看該作者
Local Modeling Classifier for Microarray Gene-Expression Dataexpression microarray datasets of different kinds of cancer. A comparative study with other classifiers such as Support Vector Machine (SVM), C4.5, na?ve Bayes and k-Nearest Neighbor is performed. Our approach shows excellent results outperforming all other classifiers.
60#
發(fā)表于 2025-4-1 00:19:43 | 只看該作者
A Learned Saliency Predictor for Dynamic Natural ScenesThe quality of the predictor is tested on a large test set of eye movement data and compared with the performance of two state-of-the-art saliency models on this data set. The proposed model demonstrates significant improvement – mean ROC score of 0.665 – over the selected baseline models with ROC scores of 0.625 and 0.635.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 10:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
清水河县| 昌图县| 盐源县| 酉阳| 英山县| 山东| 什邡市| 稻城县| 汨罗市| 通河县| 黑龙江省| 邻水| 四川省| 大英县| 荆州市| 隆林| 永泰县| 隆昌县| 库车县| 大化| 威海市| 永顺县| 江北区| 开阳县| 铜陵市| 工布江达县| 汝南县| 贺州市| 黔南| 伊金霍洛旗| 栾城县| 宁南县| 中山市| 日喀则市| 沭阳县| 博罗县| 临高县| 武宣县| 福安市| 亚东县| 墨玉县|