找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks - ICANN 2006; 16th International C Stefanos Kollias,Andreas Stafylopatis,Erkki Oja Conference proceedings 2006 S

[復(fù)制鏈接]
樓主: 凝固
41#
發(fā)表于 2025-3-28 17:21:23 | 只看該作者
Content-Based Coin Retrieval Using Invariant Features and Self-organizing Maps1 or L2 similarity measures lead to excellent retrieval capabilities. Finally, color quantization of the database images using self-organizing maps not only leads to memory savings but also it is shown to even improve retrieval accuracy.
42#
發(fā)表于 2025-3-28 21:18:57 | 只看該作者
43#
發(fā)表于 2025-3-28 23:21:45 | 只看該作者
44#
發(fā)表于 2025-3-29 06:12:26 | 只看該作者
Feuerfeste Baustoffe in Siemens-Martin-?fenual features to evaluate the potential of our approach in bridging the gap from visual features to semantic concepts by the use textual presentations. Our initial results show a promising increase in retrieval performance.
45#
發(fā)表于 2025-3-29 09:58:35 | 只看該作者
https://doi.org/10.1007/978-3-7091-7948-2ructure of this metric and proposes a method to update it very efficiently based on the GM models of the relevant and irrelevant images characterized by the user. We show with experiments the merits of the proposed methodology.
46#
發(fā)表于 2025-3-29 14:25:06 | 只看該作者
https://doi.org/10.1007/978-3-662-28736-1erefore, we have implemented a set of comparison methods, the neural network and an extension to the learning rule to include a human as a teacher. First results are promising and show that the approach is valuable for learning human judged time-series similarity with a neural network.
47#
發(fā)表于 2025-3-29 19:03:42 | 只看該作者
48#
發(fā)表于 2025-3-29 20:42:44 | 只看該作者
49#
發(fā)表于 2025-3-30 02:31:48 | 只看該作者
A Relevance Feedback Approach for Content Based Image Retrieval Using Gaussian Mixture Modelsructure of this metric and proposes a method to update it very efficiently based on the GM models of the relevant and irrelevant images characterized by the user. We show with experiments the merits of the proposed methodology.
50#
發(fā)表于 2025-3-30 06:26:34 | 只看該作者
Learning Time-Series Similarity with a Neural Network by Combining Similarity Measureserefore, we have implemented a set of comparison methods, the neural network and an extension to the learning rule to include a human as a teacher. First results are promising and show that the approach is valuable for learning human judged time-series similarity with a neural network.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 07:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
杭州市| 宁晋县| 漯河市| 仁化县| 崇左市| 监利县| 慈利县| 大田县| 惠安县| 利辛县| 扎赉特旗| 海伦市| 若羌县| 东至县| 临清市| 中卫市| 长沙市| 陕西省| 浙江省| 湄潭县| 柞水县| 遵化市| 崇阳县| 福贡县| 大连市| 潮安县| 乌鲁木齐县| 六枝特区| 大石桥市| 南部县| 和林格尔县| 西安市| 甘孜县| 定结县| 余姚市| 武安市| 古蔺县| 宜良县| 桂东县| 汕头市| 新疆|