找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks - ICANN 2006; 16th International C Stefanos D. Kollias,Andreas Stafylopatis,Erkki Oja Conference proceedings 200

[復(fù)制鏈接]
樓主: 變成小松鼠
61#
發(fā)表于 2025-4-1 02:37:31 | 只看該作者
62#
發(fā)表于 2025-4-1 10:01:27 | 只看該作者
63#
發(fā)表于 2025-4-1 12:07:49 | 只看該作者
Building Ensembles of Neural Networks with Class-Switchingon of the training data. The perturbation consists in switching the class labels of a subset of training examples selected at random. Experiments on several UCI and synthetic datasets show that these class-switching ensembles can obtain improvements in classification performance over both individual networks and bagging ensembles.
64#
發(fā)表于 2025-4-1 18:23:57 | 只看該作者
65#
發(fā)表于 2025-4-1 20:37:28 | 只看該作者
Jan Augustin,Gert Middelhoff,W. Virgil Brown, even fast variable selection methods lead to high computational load. However, spectra are generally smooth and can therefore be accurately approximated by splines. In this paper, we propose to use a B-spline expansion as a pre-processing step before variable selection, in which original variables
66#
發(fā)表于 2025-4-2 02:38:58 | 只看該作者
67#
發(fā)表于 2025-4-2 05:17:46 | 只看該作者
https://doi.org/10.1007/978-3-642-66302-4ancy filter using mutual information between regression and target variables. We introduce permutation tests to find statistically significant relevant and redundant features. Second, a wrapper searches for good candidate feature subsets by taking the regression model into account. The advantage of
68#
發(fā)表于 2025-4-2 08:26:02 | 只看該作者
Günther Dietze,Hans-Ulrich H?ringparameters coming from irrelevant or redundant variables are eliminated. Information theory provides a robust theoretical framework for performing input variable selection thanks to the concept of mutual information. Nevertheless, for continuous variables, it is usually a more difficult task to dete
69#
發(fā)表于 2025-4-2 12:29:01 | 只看該作者
70#
發(fā)表于 2025-4-2 16:37:16 | 只看該作者
Molecular Biology Intelligence Unitic plasticity and changes in the network structure. Event driven computation optimizes processing speed in order to simulate networks with large number of neurons. The training procedure is applied to the face recognition task. Preliminary experiments on a public available face image dataset show th
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
裕民县| 讷河市| 色达县| 云安县| 遵化市| 清苑县| 崇阳县| 和田县| 克什克腾旗| 澄迈县| 阿合奇县| 桐庐县| 建水县| 灵宝市| 韶山市| 耒阳市| 湄潭县| 白山市| 峨眉山市| 沾化县| 蓝田县| 三明市| 宾阳县| 邢台县| 无锡市| 余干县| 阳东县| 宣化县| 七台河市| 聂拉木县| 瓦房店市| 平阳县| 玉环县| 张家界市| 伊金霍洛旗| 东港市| 武宁县| 高青县| 峡江县| 常熟市| 龙江县|