找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks in Pattern Recognition; 6th IAPR TC 3 Intern Neamat Gayar,Friedhelm Schwenker,Cheng Suen Conference proceedings

[復(fù)制鏈接]
樓主: LANK
41#
發(fā)表于 2025-3-28 17:15:13 | 只看該作者
Incremental Feature Selection by Block Addition and Block Deletion Using Least Squares SVRsthe discrete recognition rate. This leads to inferior feature selection results. To solve this problem, we propose using a least squares support vector regressor (LS SVR), instead of an LS support vector machine (LS SVM). We consider the labels (1/-1) as the targets of the LS SVR and the mean absolu
42#
發(fā)表于 2025-3-28 21:08:04 | 只看該作者
43#
發(fā)表于 2025-3-29 01:04:25 | 只看該作者
44#
發(fā)表于 2025-3-29 04:39:32 | 只看該作者
Hidden Markov Models Based on Generalized Dirichlet Mixtures for Proportional Data Modelingonal data modeling has been seldom mentioned in the literature. However, proportional data are a common way of representing large data in a compact fashion and often arise in pattern recognition applications frameworks. HMMs have been first developed for discrete and Gaussian data and their extensio
45#
發(fā)表于 2025-3-29 10:43:20 | 只看該作者
Majority-Class Aware Support Vector Domain Oversampling for Imbalanced Classification Problemsiption to the minority class but in contrast to many other algorithms, awareness of samples of the majority class is used to improve the estimation process. The majority samples are incorporated in the optimization procedure and the resulting domain descriptions are generally superior to those witho
46#
發(fā)表于 2025-3-29 11:47:16 | 只看該作者
47#
發(fā)表于 2025-3-29 18:03:28 | 只看該作者
Dynamic Weighted Fusion of Adaptive Classifier Ensembles Based on Changing Data Streamsmble-based strategies have been proposed to preserve previously-acquired knowledge and reduce knowledge corruption, the fusion of multiple classifiers trained to represent different concepts can increase the uncertainty in prediction level, since only a sub-set of all classifier may be relevant. In
48#
發(fā)表于 2025-3-29 23:43:44 | 只看該作者
Combining Bipartite Graph Matching and Beam Search for Graph Edit Distance Approximation problem and can thus be solved in exponential time complexity only. A previously introduced approximation framework reduces the computation of GED to an instance of a linear sum assignment problem. Major benefit of this reduction is that an optimal assignment of nodes (including local structures) c
49#
發(fā)表于 2025-3-30 01:35:35 | 只看該作者
50#
發(fā)表于 2025-3-30 07:08:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 23:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
共和县| 宕昌县| 类乌齐县| 德清县| 江津市| 阿拉善右旗| 山阳县| 泸西县| 武邑县| 凤冈县| 新和县| 全南县| 西畴县| 古田县| 文昌市| 醴陵市| 仁怀市| 浙江省| 苏尼特右旗| 乌兰浩特市| 湖南省| 涡阳县| 高碑店市| 横山县| 杨浦区| 天等县| 安远县| 临猗县| 江口县| 左权县| 扶绥县| 南靖县| 大新县| 商城县| 新密市| 江川县| 凤阳县| 黄冈市| 奉节县| 禄丰县| 三河市|