找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks in Pattern Recognition; Second IAPR Workshop Friedhelm Schwenker,Simone Marinai Conference proceedings 2006 Spri

[復(fù)制鏈接]
樓主: opioid
11#
發(fā)表于 2025-3-23 12:05:42 | 只看該作者
12#
發(fā)表于 2025-3-23 17:03:47 | 只看該作者
13#
發(fā)表于 2025-3-23 21:10:41 | 只看該作者
Incremental Training of Support Vector Machines Using Truncated Hyperconespercones. We generate the truncated surface with the center being the center of unbounded support vectors and with the radius being the maximum distance from the center to support vectors. We determine the hypercone surface so that it includes a datum, which is far away from the separating hyperplan
14#
發(fā)表于 2025-3-23 22:31:42 | 只看該作者
Fast Training of Linear Programming Support Vector Machines Using Decomposition Techniqueslementation of decomposition techniques leads to infinite loops. To solve this problem and to further speed up training, in this paper, we propose an improved decomposition techniques for training LP-SVMs. If an infinite loop is detected, we include in the next working set all the data in the workin
15#
發(fā)表于 2025-3-24 04:45:54 | 只看該作者
Multiple Classifier Systems for Embedded String Patterns. However, there has been reported only little work on combining classifiers in structural pattern recognition. In this paper we describe a method for embedding strings into real vector spaces based on prototype selection, in order to gain several vectorial descriptions of the string data. We presen
16#
發(fā)表于 2025-3-24 07:42:44 | 只看該作者
17#
發(fā)表于 2025-3-24 12:29:11 | 只看該作者
Hierarchical Neural Networks Utilising Dempster-Shafer Evidence Theorye used to retrieve the classification result. More complex ways of evaluating the hierarchy output that take into account the complete information the hierarchy provides yield improved classification results. Due to the hierarchical output space decomposition that is inherent to hierarchical neural
18#
發(fā)表于 2025-3-24 16:36:09 | 只看該作者
Combining MF Networks: A Comparison Among Statistical Methods and Stacked Generalizationa single output. In this paper we focus on the combination module. We have proposed two methods based on . as the combination module of an ensemble of neural networks. In this paper we have performed a comparison among the two versions of . and six statistical combination methods in order to get the
19#
發(fā)表于 2025-3-24 20:52:07 | 只看該作者
https://doi.org/10.1007/11829898artificial neural network; bioinformatics; cognition; data mining; learning; neural network; pattern recog
20#
發(fā)表于 2025-3-25 02:01:07 | 只看該作者
978-3-540-37951-5Springer-Verlag GmbH Germany, part of Springer Nature 2006
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
香格里拉县| 宜州市| 海宁市| 金门县| 宜州市| 九龙县| 西峡县| 福清市| 石楼县| 文登市| 金山区| 西吉县| 佛山市| 濮阳县| 河南省| 顺义区| 永善县| 临泉县| 山丹县| 惠来县| 本溪市| 简阳市| 五常市| 习水县| 河间市| 玛曲县| 永吉县| 清涧县| 交口县| 宝兴县| 东乌珠穆沁旗| 来安县| 鄂温| 辽阳县| 红安县| 定结县| 林芝县| 专栏| 霞浦县| 璧山县| 加查县|