找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks in Biomedicine; Paulo J. G. Lisboa,Emmanuel C. Ifeachor,Piotr S. S Book 2000 Springer-Verlag London 2000 Elektr

[復(fù)制鏈接]
查看: 48028|回復(fù): 54
樓主
發(fā)表于 2025-3-21 19:24:11 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Neural Networks in Biomedicine
影響因子2023Paulo J. G. Lisboa,Emmanuel C. Ifeachor,Piotr S. S
視頻videohttp://file.papertrans.cn/163/162676/162676.mp4
學(xué)科分類Perspectives in Neural Computing
圖書封面Titlebook: Artificial Neural Networks in Biomedicine;  Paulo J. G. Lisboa,Emmanuel C. Ifeachor,Piotr S. S Book 2000 Springer-Verlag London 2000 Elektr
影響因子Following the intense research activIties of the last decade, artificial neural networks have emerged as one of the most promising new technologies for improving the quality of healthcare. Many successful applications of neural networks to biomedical problems have been reported which demonstrate, convincingly, the distinct benefits of neural networks, although many ofthese have only undergone a limited clinical evaluation. Healthcare providers and developers alike have discovered that medicine and healthcare are fertile areas for neural networks: the problems here require expertise and often involve non-trivial pattern recognition tasks - there are genuine difficulties with conventional methods, and data can be plentiful. The intense research activities in medical neural networks, and allied areas of artificial intelligence, have led to a substantial body of knowledge and the introduction of some neural systems into clinical practice. An aim of this book is to provide a coherent framework for some of the most experienced users and developers of medical neural networks in the world to share their knowledge and expertise with readers.
Pindex Book 2000
The information of publication is updating

書目名稱Artificial Neural Networks in Biomedicine影響因子(影響力)




書目名稱Artificial Neural Networks in Biomedicine影響因子(影響力)學(xué)科排名




書目名稱Artificial Neural Networks in Biomedicine網(wǎng)絡(luò)公開度




書目名稱Artificial Neural Networks in Biomedicine網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Neural Networks in Biomedicine被引頻次




書目名稱Artificial Neural Networks in Biomedicine被引頻次學(xué)科排名




書目名稱Artificial Neural Networks in Biomedicine年度引用




書目名稱Artificial Neural Networks in Biomedicine年度引用學(xué)科排名




書目名稱Artificial Neural Networks in Biomedicine讀者反饋




書目名稱Artificial Neural Networks in Biomedicine讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:28:36 | 只看該作者
1431-6854 ntroduction of some neural systems into clinical practice. An aim of this book is to provide a coherent framework for some of the most experienced users and developers of medical neural networks in the world to share their knowledge and expertise with readers.978-1-85233-005-7978-1-4471-0487-2Series ISSN 1431-6854
板凳
發(fā)表于 2025-3-22 04:19:30 | 只看該作者
地板
發(fā)表于 2025-3-22 05:00:07 | 只看該作者
The Application of PAPNET to Diagnostic Cytologyn detail the microscopic features that are of diagnostic significance and the interested reader is referred to other sources [1],[2]. Suffice to say, that the differences between benign and malignant cells are reflected mainly in the configuration and staining qualities of the nucleus of the cells,
5#
發(fā)表于 2025-3-22 10:58:59 | 只看該作者
6#
發(fā)表于 2025-3-22 15:12:24 | 只看該作者
Georgia: An Overviewns (LPs). These LPs can use incomplete data, independently boost their particular characteristics, and they do not grow into inhibiting numbers. GEORGIA resulted in a generalisation performance of 88%-95% correct classification of unknown medical inputs when first taught. Moreover, a `user-friendly’
7#
發(fā)表于 2025-3-22 17:20:11 | 只看該作者
8#
發(fā)表于 2025-3-22 22:55:11 | 只看該作者
Paulo J. G. Lisboa,Emmanuel C. Ifeachor,Piotr S. S
9#
發(fā)表于 2025-3-23 03:16:25 | 只看該作者
https://doi.org/10.1007/BFb0108599eural network to some more complicated human biomedical problems might be more successful than the traditional linear approaches used in the past. Described here is the progress that has been made in the application of the artificial neural network to the analysis of human disease. Covered herein is
10#
發(fā)表于 2025-3-23 06:20:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
响水县| 砀山县| 文昌市| 张家港市| 彰化县| 兴化市| 镇原县| 商丘市| 眉山市| 宁都县| 融水| 泽州县| 石台县| 安新县| 石林| 顺昌县| 宁波市| 桦川县| 通江县| 平谷区| 金门县| 邛崃市| 涞水县| 罗江县| 宁南县| 韶山市| 桐柏县| 拉萨市| 囊谦县| 行唐县| 临湘市| 株洲县| 正阳县| 涟源市| 株洲市| 鹿邑县| 商城县| 柳河县| 湖州市| 鄄城县| 霞浦县|