找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks for Modelling and Control of Non-Linear Systems; Johan A. K. Suykens,Joos P. L. Vandewalle,Bart L. Book 1996 S

[復(fù)制鏈接]
查看: 20159|回復(fù): 38
樓主
發(fā)表于 2025-3-21 17:10:09 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Artificial Neural Networks for Modelling and Control of Non-Linear Systems
影響因子2023Johan A. K. Suykens,Joos P. L. Vandewalle,Bart L.
視頻videohttp://file.papertrans.cn/163/162674/162674.mp4
圖書封面Titlebook: Artificial Neural Networks for Modelling and Control of Non-Linear Systems;  Johan A. K. Suykens,Joos P. L. Vandewalle,Bart L.  Book 1996 S
影響因子Artificial neural networks possess several properties that makethem particularly attractive for applications to modelling and controlof complex non-linear systems. Among these properties are theiruniversal approximation ability, their parallel network structure andthe availability of on- and off-line learning methods for theinterconnection weights. However, dynamic models that contain neuralnetwork architectures might be highly non-linear and difficult toanalyse as a result. .Artificial Neural Networks for Modellingand. .Control of Non-Linear Systems. investigates the subjectfrom a system theoretical point of view. However the mathematicaltheory that is required from the reader is limited to matrix calculus,basic analysis, differential equations and basic linear system theory.No preliminary knowledge of neural networks is explicitly required..The book presents both classical and novel network architectures andlearning algorithms for modelling and control. Topics includenon-linear system identification, neural optimal control, top-downmodel based neural control design and stability analysis of neuralcontrol systems. A major contribution of this book is to introduce.NLq. .Theory. as
Pindex Book 1996
The information of publication is updating

書目名稱Artificial Neural Networks for Modelling and Control of Non-Linear Systems影響因子(影響力)




書目名稱Artificial Neural Networks for Modelling and Control of Non-Linear Systems影響因子(影響力)學(xué)科排名




書目名稱Artificial Neural Networks for Modelling and Control of Non-Linear Systems網(wǎng)絡(luò)公開度




書目名稱Artificial Neural Networks for Modelling and Control of Non-Linear Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Neural Networks for Modelling and Control of Non-Linear Systems被引頻次




書目名稱Artificial Neural Networks for Modelling and Control of Non-Linear Systems被引頻次學(xué)科排名




書目名稱Artificial Neural Networks for Modelling and Control of Non-Linear Systems年度引用




書目名稱Artificial Neural Networks for Modelling and Control of Non-Linear Systems年度引用學(xué)科排名




書目名稱Artificial Neural Networks for Modelling and Control of Non-Linear Systems讀者反饋




書目名稱Artificial Neural Networks for Modelling and Control of Non-Linear Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:49:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:24:43 | 只看該作者
Book 1996near systems. Among these properties are theiruniversal approximation ability, their parallel network structure andthe availability of on- and off-line learning methods for theinterconnection weights. However, dynamic models that contain neuralnetwork architectures might be highly non-linear and dif
地板
發(fā)表于 2025-3-22 04:35:36 | 只看該作者
5#
發(fā)表于 2025-3-22 11:06:05 | 只看該作者
Organische und protonische Halbleiter,hitectures. In Section 2.2 we present an overview of universal approximation theorems, together with a brief historical context. In Section 2.3 classical learning paradigms for feedforward and recurrent neural networks and RBF networks are reviewed.
6#
發(fā)表于 2025-3-22 15:16:50 | 只看該作者
Artificial neural networks: architectures and learning rules,hitectures. In Section 2.2 we present an overview of universal approximation theorems, together with a brief historical context. In Section 2.3 classical learning paradigms for feedforward and recurrent neural networks and RBF networks are reviewed.
7#
發(fā)表于 2025-3-22 21:02:16 | 只看該作者
8#
發(fā)表于 2025-3-23 00:16:04 | 只看該作者
9#
發(fā)表于 2025-3-23 01:35:31 | 只看該作者
Organische und protonische Halbleiter,the multilayer perceptron and the radial basis function network. This Chapter is organized as follows. In Section 2.1 we give a description of the architectures. In Section 2.2 we present an overview of universal approximation theorems, together with a brief historical context. In Section 2.3 classi
10#
發(fā)表于 2025-3-23 08:09:45 | 只看該作者
Advances in Solid State Physicsr perceptrons are discussed, together with learning algorithms, practical aspects and examples. The Chapter is organized as follows. In Section 3.1 we review model structures such as NARX, NARMAX and nonlinear state space models. In Section 3.2 parametrizations of these models by multilayer neural n
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通城县| 迭部县| 长宁区| 晋江市| 台州市| 寻乌县| 泰安市| 绥化市| 兴义市| 新丰县| 镇安县| 广东省| 历史| 稻城县| 沂源县| 当雄县| 南汇区| 监利县| 侯马市| 华容县| 绥中县| 天峨县| 阜城县| 广汉市| 香河县| 始兴县| 耒阳市| 黄龙县| 宽甸| 襄汾县| 营口市| 大渡口区| 前郭尔| 扎赉特旗| 潍坊市| 老河口市| 那曲县| 西林县| 清涧县| 新兴县| 梧州市|