找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003; Joint International Okyay Kaynak,Ethem Alpaydin,Lei Xu C

[復制鏈接]
樓主: Callow
51#
發(fā)表于 2025-3-30 08:31:30 | 只看該作者
52#
發(fā)表于 2025-3-30 16:22:21 | 只看該作者
Selective Sampling Methods in One-Class Classification Problemse most informative, unlabeled examples. This additional information added to an initial, randomly chosen training set is expected to improve the generalization performance of a learning machine. We investigate some methods for a selection of the most informative examples in the context of one-class
53#
發(fā)表于 2025-3-30 16:33:06 | 只看該作者
Learning Distributed Representations of High-Arity Relational Data with Non-linear Relational Embeddrepresent any binary relations, but that there are relations of arity greater than 2 that it cannot represent. We then introduce Non-Linear Relational Embedding (NLRE) and show that it can learn any relation. Results of NLRE on the Family Tree Problem show that generalization is much better than the
54#
發(fā)表于 2025-3-30 22:07:51 | 只看該作者
55#
發(fā)表于 2025-3-31 04:56:28 | 只看該作者
Felipe Yera Barchi,Fabiana Lopes da Cunhasional stochastic Hopfield networks. For these Hidden Hopfield Models (HHMs), mean field methods are derived for learning discrete and continuous temporal sequences. We also discuss applications of HHMs to learning of incomplete sequences and reconstruction of 3D occupancy graphs.
56#
發(fā)表于 2025-3-31 06:04:26 | 只看該作者
57#
發(fā)表于 2025-3-31 09:37:46 | 只看該作者
Approximate Learning in Temporal Hidden Hopfield Modelssional stochastic Hopfield networks. For these Hidden Hopfield Models (HHMs), mean field methods are derived for learning discrete and continuous temporal sequences. We also discuss applications of HHMs to learning of incomplete sequences and reconstruction of 3D occupancy graphs.
58#
發(fā)表于 2025-3-31 13:58:55 | 只看該作者
59#
發(fā)表于 2025-3-31 20:50:38 | 只看該作者
60#
發(fā)表于 2025-3-31 23:21:39 | 只看該作者
0302-9743 ent systems, neural network hardware, cognitive science, computational neuroscience, context aware systems, complex-valued neural networks, emotion recognition, and applications in bioinformatics..978-3-540-40408-8978-3-540-44989-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-23 19:14
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
淮安市| 都匀市| 乌苏市| 永仁县| 新巴尔虎右旗| 晋州市| 潮安县| 潞西市| 克什克腾旗| 昌吉市| 岗巴县| 南充市| 象州县| 云阳县| 莒南县| 收藏| 西青区| 荃湾区| 高要市| 旬邑县| 三台县| 新安县| 平罗县| 鄂托克前旗| 沧源| 桐城市| 扶余县| 永川市| 葫芦岛市| 呈贡县| 阳原县| 东山县| 察雅县| 湘潭市| 长宁县| 西昌市| 彩票| 峡江县| 陆河县| 故城县| 灌阳县|