找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003; Joint International Okyay Kaynak,Ethem Alpaydin,Lei Xu C

[復(fù)制鏈接]
樓主: Callow
51#
發(fā)表于 2025-3-30 08:31:30 | 只看該作者
52#
發(fā)表于 2025-3-30 16:22:21 | 只看該作者
Selective Sampling Methods in One-Class Classification Problemse most informative, unlabeled examples. This additional information added to an initial, randomly chosen training set is expected to improve the generalization performance of a learning machine. We investigate some methods for a selection of the most informative examples in the context of one-class
53#
發(fā)表于 2025-3-30 16:33:06 | 只看該作者
Learning Distributed Representations of High-Arity Relational Data with Non-linear Relational Embeddrepresent any binary relations, but that there are relations of arity greater than 2 that it cannot represent. We then introduce Non-Linear Relational Embedding (NLRE) and show that it can learn any relation. Results of NLRE on the Family Tree Problem show that generalization is much better than the
54#
發(fā)表于 2025-3-30 22:07:51 | 只看該作者
55#
發(fā)表于 2025-3-31 04:56:28 | 只看該作者
Felipe Yera Barchi,Fabiana Lopes da Cunhasional stochastic Hopfield networks. For these Hidden Hopfield Models (HHMs), mean field methods are derived for learning discrete and continuous temporal sequences. We also discuss applications of HHMs to learning of incomplete sequences and reconstruction of 3D occupancy graphs.
56#
發(fā)表于 2025-3-31 06:04:26 | 只看該作者
57#
發(fā)表于 2025-3-31 09:37:46 | 只看該作者
Approximate Learning in Temporal Hidden Hopfield Modelssional stochastic Hopfield networks. For these Hidden Hopfield Models (HHMs), mean field methods are derived for learning discrete and continuous temporal sequences. We also discuss applications of HHMs to learning of incomplete sequences and reconstruction of 3D occupancy graphs.
58#
發(fā)表于 2025-3-31 13:58:55 | 只看該作者
59#
發(fā)表于 2025-3-31 20:50:38 | 只看該作者
60#
發(fā)表于 2025-3-31 23:21:39 | 只看該作者
0302-9743 ent systems, neural network hardware, cognitive science, computational neuroscience, context aware systems, complex-valued neural networks, emotion recognition, and applications in bioinformatics..978-3-540-40408-8978-3-540-44989-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 22:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
呼和浩特市| 上栗县| 延寿县| 绥德县| 磐安县| 高阳县| 镇江市| 衡山县| 商水县| 盐山县| 文山县| 四川省| 镇赉县| 旺苍县| 桦南县| 子洲县| 方山县| 札达县| 大渡口区| 清水河县| 焉耆| 香河县| 金昌市| 林西县| 大冶市| 志丹县| 屏东市| 宁陵县| 丹棱县| 湄潭县| 尼勒克县| 东阳市| 绩溪县| 德庆县| 吴堡县| 阿拉尔市| 巴中市| 个旧市| 松潘县| 崇阳县| 绥阳县|