找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[復(fù)制鏈接]
樓主: 相似
21#
發(fā)表于 2025-3-25 05:52:30 | 只看該作者
,Exploring the?Role of?Recursive Convolutional Layer in?Generative Adversarial Networks,ualitatively and quantitatively. Preliminary experiments suggest that the use of recursive layers holds significant potential to generate higher-quality samples in GANs. The code is publicly available at ..
22#
發(fā)表于 2025-3-25 10:14:18 | 只看該作者
23#
發(fā)表于 2025-3-25 13:07:16 | 只看該作者
24#
發(fā)表于 2025-3-25 19:08:18 | 只看該作者
25#
發(fā)表于 2025-3-25 20:25:22 | 只看該作者
,Low-Frequency Features Optimization for?Transferability Enhancement in?Radar Target Adversarial Attl examples focus on the low-frequency features of attacked targets, which are more generalized. The adversarial examples are guided to attack the high-level semantic features of the target, and the transferability of adversarial examples is improved. Experimental results on moving and stationary tar
26#
發(fā)表于 2025-3-26 03:01:36 | 只看該作者
Multi-convolution and Adaptive-Stride Based Transferable Adversarial Attacks,aptive-stride module adjusts the stride adaptively to control the change range of the stride. Experimental results have shown that MCAN-FGM has a higher?attack success rate?than state-of-the-art gradient-based attack methods.
27#
發(fā)表于 2025-3-26 05:39:46 | 只看該作者
,Multi-source Open-Set Image Classification Based on?Deep Adversarial Domain Adaptation,ture space. Furthermore, to address the inadequate handling of unknown classes in existing methods, we further partition the unknown class samples in the target domain. The proposed model is evaluated on three datasets, and consistently outperforms baseline methods and benchmark single-source open-s
28#
發(fā)表于 2025-3-26 08:49:32 | 只看該作者
29#
發(fā)表于 2025-3-26 13:42:48 | 只看該作者
,Towards Robustness of?Large Language Models on?Text-to-SQL Task: An Adversarial and?Cross-Domain Inro-shot text-to-SQL parsers, their performances degrade under adversarial and domain generalization perturbations, with varying degrees of robustness depending on the type and level of perturbations applied. We also explore the impact of usage-related factors such as prompt design on the performance
30#
發(fā)表于 2025-3-26 19:29:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 14:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
夏津县| 和静县| 文水县| 乾安县| 茂名市| 永济市| 杭州市| 盐津县| 呼玛县| 浪卡子县| 栾川县| 桦川县| 岳普湖县| 石屏县| 永州市| 安泽县| 于田县| 肇庆市| 合水县| 宝应县| 沾益县| 嘉荫县| 榆林市| 东乡县| 宣化县| 宜州市| 红桥区| 社旗县| 喀喇| 黄骅市| 茶陵县| 富平县| 四子王旗| 名山县| 斗六市| 辽源市| 平邑县| 靖远县| 磴口县| 浦城县| 栾城县|