找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2023; 32nd International C Lazaros Iliadis,Antonios Papaleonidas,Chrisina Jay Confe

[復(fù)制鏈接]
樓主: ISSUE
61#
發(fā)表于 2025-4-1 03:39:55 | 只看該作者
Siegfried Schwaigerer,Gerd Mühlenbecks that are not contained in the predefined vocabulary. Furthermore, we propose a local correlation detecting (LCD) task and fine-tune the augmented Transformers in a multi-task fashion. Extensive experiments on two public datasets show that the augmented Transformers significantly outperform their b
62#
發(fā)表于 2025-4-1 09:06:57 | 只看該作者
https://doi.org/10.1007/978-3-642-59090-0he process of feature fusion between encoder and decoder, which is used to smooth the semantic gap between encoder and decoder caused by skip-connection. We evaluated the proposed model on the ISIC 2017 and ISIC 2018 datasets. The experimental results show that the model achieves a good balance betw
63#
發(fā)表于 2025-4-1 12:28:55 | 只看該作者
https://doi.org/10.1007/978-3-662-07208-0mportant features of each lung field..Compared to state-of-the-art baseline models (DenseNet, Mask R-CNN), symmetry-aware training can improve the AUROC score by up to 10%. Furthermore, the findings indicate that, by integrating the bilateral symmetry of the lung field, the interpretability of the m
64#
發(fā)表于 2025-4-1 17:22:50 | 只看該作者
,Die elastizit?tstheoretischen Grundlagen,d to conduct two different works in parallel. One is to directly predict the individual tooth segmentation while the other is to generate an offset map for the refinement. Besides, in order to improve the accuracy of tooth boundary segmentation, a boundary-aware loss is also applied in our method. C
65#
發(fā)表于 2025-4-1 20:22:36 | 只看該作者
,Die elastizit?tstheoretischen Grundlagen,to obtain more complete localization maps. Additionally, we introduce a self-refinement mechanism to dampen the falsely activated regions in the initial localization map. Extensive experiments on two histopathology datasets demonstrate that our proposed model achieves the state-of-the-art performanc
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 09:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
温州市| 大关县| 河池市| 钟祥市| 金门县| 三门县| 横山县| 石渠县| 上犹县| 云林县| 德阳市| 绍兴市| 德江县| 淮南市| 瑞丽市| 福清市| 县级市| 彝良县| 集安市| 澄城县| 临沭县| 嘉义县| 青冈县| 嘉禾县| 高雄市| 嘉兴市| 密山市| 成武县| 边坝县| 莒南县| 陕西省| 隆尧县| 内丘县| 静海县| 镇赉县| 大田县| 竹溪县| 开远市| 客服| 广灵县| 上饶县|