找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2022; 31st International C Elias Pimenidis,Plamen Angelov,Mehmet Aydin Conference p

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:01:38 | 只看該作者
Exploring Deep Learning Architectures for Localised Hourly Air Quality Prediction,n context, we propose that as a decision support tool it is more valuable to provide hourly forecasts at local scales with the following considerations: (1) the system should be designed for rapid and simple human-tuning of different trade-offs; (2) the chosen model and hyper-parameters should maxim
12#
發(fā)表于 2025-3-23 16:35:16 | 只看該作者
13#
發(fā)表于 2025-3-23 22:03:20 | 只看該作者
14#
發(fā)表于 2025-3-24 01:18:47 | 只看該作者
,F-Transformer: Point Cloud Fusion Transformer for?Cooperative 3D Object Detection,ded, or small objects). Building on a two-step communication scheme to transmit the pillar features between views, it is possible to observe the same object from different viewpoints. We then design a feature fusion scheme based on Transformer to fuse the pillar features by discretizing the point cl
15#
發(fā)表于 2025-3-24 02:54:13 | 只看該作者
How to Face Unseen Defects? UDGAN for Improving Unseen Defects Recognition,ad to large economic losses. Existing methods focus on the recognition of seen defects, but are powerless against unseen defects. The recognition of unseen defects is a challenging task and has not been widely explored. To our knowledge, we are the first to raise the issue of unseen defect recogniti
16#
發(fā)表于 2025-3-24 09:00:13 | 只看該作者
17#
發(fā)表于 2025-3-24 13:14:20 | 只看該作者
,Lymphoma Ultrasound Image Segmentation with?Self-Attention Mechanism and?Stable Learning,f lymphoma ultrasound images: (i) the fuzziness of structural boundaries in the image domain and (ii) the generalization of images scanned by different ultrasonic instruments. To solve these two problems, we propose an segmentation framework based on self-attention mechanism and stable learning, in
18#
發(fā)表于 2025-3-24 15:39:07 | 只看該作者
19#
發(fā)表于 2025-3-24 20:52:19 | 只看該作者
Elektrochemisches Abtragen (ECM),l image. Then, in order to solve the problem of curve deviation and curve defect, two components, curve correction and curve filling, which adopt deep regression and Generative adversarial networks, are devised for spectrum curve refining operation. These two outputs are fused for final segmentation
20#
發(fā)表于 2025-3-24 23:55:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
府谷县| 旌德县| 鹿邑县| 湘阴县| 科技| 寿阳县| 花莲县| 万安县| 松江区| 长阳| 桂东县| 浦东新区| 女性| 台北市| 济源市| 富蕴县| 松溪县| 班戈县| 荥阳市| 绍兴县| 红安县| 松桃| 洪泽县| 巴彦淖尔市| 罗山县| 工布江达县| 扎赉特旗| 衡山县| 三门峡市| 科技| 铜山县| 凌云县| 比如县| 拉孜县| 徐水县| 盱眙县| 乌拉特前旗| 青海省| 嘉峪关市| 裕民县| 共和县|