找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2020; 29th International C Igor Farka?,Paolo Masulli,Stefan Wermter Conference proc

[復制鏈接]
樓主: 預兆前
11#
發(fā)表于 2025-3-23 11:27:10 | 只看該作者
12#
發(fā)表于 2025-3-23 17:42:56 | 只看該作者
Neural Network Compression via?Learnable Wavelet Transformsers of RNNs. Our wavelet compressed RNNs have significantly fewer parameters yet still perform competitively with the state-of-the-art on synthetic and real-world RNN benchmarks (Source code is available at .). Wavelet optimization adds basis flexibility, without large numbers of extra weights.
13#
發(fā)表于 2025-3-23 20:50:10 | 只看該作者
0302-9743 sis, cognitive models, neural network theory and information theoretic learning, and robotics and neural models of perception and action...*The conference was postponed to 2021 due to the COVID-19 pandemic..978-3-030-61615-1978-3-030-61616-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
14#
發(fā)表于 2025-3-23 23:03:36 | 只看該作者
15#
發(fā)表于 2025-3-24 05:34:17 | 只看該作者
16#
發(fā)表于 2025-3-24 09:02:25 | 只看該作者
17#
發(fā)表于 2025-3-24 10:51:28 | 只看該作者
,Zusammenfassung und Schluβfolgerungen, any algorithm achieving depth compression of neural networks. In particular, we show that depth compression is as hard as learning the input distribution, ruling out guarantees for most existing approaches. Furthermore, even when the input distribution is of a known, simple form, we show that there are no . algorithms for depth compression.
18#
發(fā)表于 2025-3-24 15:42:24 | 只看該作者
Glossar, Begriffe und Definitionen,ect of the former uncertainty-based methods. Experiments are made on CIFAR-10 and CIFAR-100, and the results indicates that prediction stability was effective and works well on fewer-labeled datasets. Prediction stability reaches the accuracy of traditional acquisition functions like entropy on CIFAR-10, and notably outperformed them on CIFAR-100.
19#
發(fā)表于 2025-3-24 21:42:56 | 只看該作者
20#
發(fā)表于 2025-3-25 00:05:02 | 只看該作者
Pruning Artificial Neural Networks: A Way to Find Well-Generalizing, High-Entropy Sharp Minimaroaches. In this work we also propose PSP-entropy, a measure to understand how a given neuron correlates to some specific learned classes. Interestingly, we observe that the features extracted by iteratively-pruned models are less correlated to specific classes, potentially making these models a better fit in transfer learning approaches.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 10:12
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
综艺| 万盛区| 温宿县| 星座| 海原县| 阜康市| 郓城县| 眉山市| 遂川县| 临洮县| 那坡县| 长丰县| 郸城县| 兴和县| 苏尼特右旗| 太保市| 犍为县| 雅安市| 德惠市| 稻城县| 芜湖市| 神木县| 龙江县| 韶关市| 昌平区| 新蔡县| 德钦县| 奉化市| 乡城县| 吴旗县| 元氏县| 屏山县| 深水埗区| 丘北县| 太仆寺旗| 余庆县| 龙胜| 达尔| 同德县| 亳州市| 凭祥市|