找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2020; 29th International C Igor Farka?,Paolo Masulli,Stefan Wermter Conference proc

[復(fù)制鏈接]
樓主: 預(yù)兆前
11#
發(fā)表于 2025-3-23 11:27:10 | 只看該作者
12#
發(fā)表于 2025-3-23 17:42:56 | 只看該作者
Neural Network Compression via?Learnable Wavelet Transformsers of RNNs. Our wavelet compressed RNNs have significantly fewer parameters yet still perform competitively with the state-of-the-art on synthetic and real-world RNN benchmarks (Source code is available at .). Wavelet optimization adds basis flexibility, without large numbers of extra weights.
13#
發(fā)表于 2025-3-23 20:50:10 | 只看該作者
0302-9743 sis, cognitive models, neural network theory and information theoretic learning, and robotics and neural models of perception and action...*The conference was postponed to 2021 due to the COVID-19 pandemic..978-3-030-61615-1978-3-030-61616-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
14#
發(fā)表于 2025-3-23 23:03:36 | 只看該作者
15#
發(fā)表于 2025-3-24 05:34:17 | 只看該作者
16#
發(fā)表于 2025-3-24 09:02:25 | 只看該作者
17#
發(fā)表于 2025-3-24 10:51:28 | 只看該作者
,Zusammenfassung und Schluβfolgerungen, any algorithm achieving depth compression of neural networks. In particular, we show that depth compression is as hard as learning the input distribution, ruling out guarantees for most existing approaches. Furthermore, even when the input distribution is of a known, simple form, we show that there are no . algorithms for depth compression.
18#
發(fā)表于 2025-3-24 15:42:24 | 只看該作者
Glossar, Begriffe und Definitionen,ect of the former uncertainty-based methods. Experiments are made on CIFAR-10 and CIFAR-100, and the results indicates that prediction stability was effective and works well on fewer-labeled datasets. Prediction stability reaches the accuracy of traditional acquisition functions like entropy on CIFAR-10, and notably outperformed them on CIFAR-100.
19#
發(fā)表于 2025-3-24 21:42:56 | 只看該作者
20#
發(fā)表于 2025-3-25 00:05:02 | 只看該作者
Pruning Artificial Neural Networks: A Way to Find Well-Generalizing, High-Entropy Sharp Minimaroaches. In this work we also propose PSP-entropy, a measure to understand how a given neuron correlates to some specific learned classes. Interestingly, we observe that the features extracted by iteratively-pruned models are less correlated to specific classes, potentially making these models a better fit in transfer learning approaches.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临湘市| 广南县| 鄂托克前旗| 郧西县| 汉沽区| 历史| 永昌县| 许昌市| 南宫市| 南丹县| 灌云县| 延寿县| 亚东县| 玉田县| 临海市| 日喀则市| 奉贤区| 乌鲁木齐县| 博爱县| 洛隆县| 普格县| 晋州市| 包头市| 江源县| 湖州市| 阳谷县| 灵宝市| 无棣县| 庆安县| 漳浦县| 南康市| 遂川县| 普兰店市| 博爱县| 周口市| 库伦旗| 固镇县| 凤城市| 定州市| 奉节县| 云安县|