找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2017; 26th International C Alessandra Lintas,Stefano Rovetta,Alessandro E.P. Confe

[復制鏈接]
樓主: 出租車
51#
發(fā)表于 2025-3-30 09:26:37 | 只看該作者
Fernsehen – Internet – Konvergenzcessfully employed for nation-state APT attribution. We use sandbox reports (recording the behavior of the APT when run dynamically) as raw input for the neural network, allowing the DNN to learn high level feature abstractions of the APTs itself. Using a test set of 1,000 Chinese and Russian developed APTs, we achieved an accuracy rate of 94.6%.
52#
發(fā)表于 2025-3-30 13:23:13 | 只看該作者
https://doi.org/10.1007/978-3-658-30251-1butions of groups and parameters that represent the noise as hidden variables. The model can be learned based on a variational Bayesian method. In numerical experiments, we show that the proposed model outperforms existing methods in terms of the estimation of the true labels of instances.
53#
發(fā)表于 2025-3-30 18:12:19 | 只看該作者
54#
發(fā)表于 2025-3-30 21:56:41 | 只看該作者
55#
發(fā)表于 2025-3-31 02:51:02 | 只看該作者
56#
發(fā)表于 2025-3-31 08:27:42 | 只看該作者
DeepAPT: Nation-State APT Attribution Using End-to-End Deep Neural Networkscessfully employed for nation-state APT attribution. We use sandbox reports (recording the behavior of the APT when run dynamically) as raw input for the neural network, allowing the DNN to learn high level feature abstractions of the APTs itself. Using a test set of 1,000 Chinese and Russian developed APTs, we achieved an accuracy rate of 94.6%.
57#
發(fā)表于 2025-3-31 10:03:14 | 只看該作者
58#
發(fā)表于 2025-3-31 13:23:04 | 只看該作者
59#
發(fā)表于 2025-3-31 19:32:41 | 只看該作者
60#
發(fā)表于 2025-4-1 01:13:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
酒泉市| 亚东县| 科技| 历史| 武冈市| 达拉特旗| 沿河| 天峨县| 信阳市| 利辛县| 高安市| 边坝县| 大余县| 新巴尔虎右旗| 韩城市| 邯郸县| 库尔勒市| 章丘市| 喀什市| 牡丹江市| 柯坪县| 蕉岭县| 峨边| 仪陇县| 密山市| 沅陵县| 红桥区| 牙克石市| 闸北区| 潮安县| 蓝田县| 乌拉特前旗| 陆丰市| 景洪市| 抚宁县| 清水河县| 新邵县| 汉川市| 泌阳县| 虞城县| 茶陵县|