找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2016; 25th International C Alessandro E.P. Villa,Paolo Masulli,Antonio Javier Confe

[復(fù)制鏈接]
樓主: 娛樂某人
41#
發(fā)表于 2025-3-28 15:19:59 | 只看該作者
42#
發(fā)表于 2025-3-28 21:16:01 | 只看該作者
43#
發(fā)表于 2025-3-29 02:31:23 | 只看該作者
44#
發(fā)表于 2025-3-29 07:00:48 | 只看該作者
Keyword Spotting with Convolutional Deep Belief Networks and Dynamic Time Warpingworks and using Dynamic Time Warping for word scoring. Features are learned from word images, in an unsupervised manner, using a sliding window to extract horizontal patches. For two single writer historical data sets, it is shown that the proposed learned feature extractor outperforms two standard
45#
發(fā)表于 2025-3-29 07:33:00 | 只看該作者
Computational Advantages of Deep Prototype-Based Learningdel but at a fraction of the computational cost, especially w.r.t. memory requirements. As prototype-based classification and regression methods are typically plagued by the exploding number of prototypes necessary to solve complex problems, this is an important step towards efficient prototype-base
46#
發(fā)表于 2025-3-29 15:00:04 | 只看該作者
Deep Convolutional Neural Networks for Classifying Body Constitutionoblem of standardizing constitutional classification has become a constraint on the development of Chinese medical constitution. Traditional recognition methods, such as questionnaire and medical examination have the shortcoming of inefficiency and low accuracy. We present an advanced deep convoluti
47#
發(fā)表于 2025-3-29 19:08:38 | 只看該作者
Feature Extractor Based Deep Method to Enhance Online Arabic Handwritten Recognition Systemit handcrafted features based on beta-elliptic model and automatic features using deep classifier called Convolutional Deep Belief Network (CDBN). The experiments are conducted on two different Arabic databases: LMCA and ADAB databases which including respectively isolated characters and Tunisian na
48#
發(fā)表于 2025-3-29 20:03:40 | 只看該作者
49#
發(fā)表于 2025-3-30 00:44:49 | 只看該作者
50#
發(fā)表于 2025-3-30 05:10:02 | 只看該作者
Tactile Convolutional Networks for Online Slip and Rotation Detectionetwork layouts and reached a final classification rate of more than 97?%. Using consumer class GPUs, slippage and rotation events can be detected within 10?ms, which is still feasible for adaptive grasp control.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 00:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上思县| 阳朔县| 丰镇市| 宁城县| 梨树县| 兴业县| 广德县| 汉寿县| 九台市| 商洛市| 永胜县| 巴林左旗| 昌黎县| 禄劝| 紫阳县| 犍为县| 龙井市| 儋州市| 秦皇岛市| 府谷县| 东港市| 彝良县| 扶余县| 德化县| 清水县| 汾阳市| 兴安县| 贵港市| 屯昌县| 固始县| 通许县| 荔波县| 靖远县| 墨竹工卡县| 平顺县| 淮南市| 龙州县| 安远县| 宜州市| 蓬溪县| 石泉县|