找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning - ICANN 2011; 21st International C Timo Honkela,W?odzis?aw Duch,Samuel Kaski Conference pro

[復(fù)制鏈接]
樓主: MIFF
21#
發(fā)表于 2025-3-25 05:21:23 | 只看該作者
22#
發(fā)表于 2025-3-25 09:58:04 | 只看該作者
https://doi.org/10.1007/978-3-662-31589-7ifier we can additionally apply the Particle Swarm Optimization algorithm to tune its free parameters. Our experimental results show that by applying Particle Swarm Optimization on the Sub-class Linear Discriminant Error Correcting Output Codes framework we get a significant improvement in the classification performance.
23#
發(fā)表于 2025-3-25 15:04:35 | 只看該作者
24#
發(fā)表于 2025-3-25 17:56:55 | 只看該作者
Optimizing Linear Discriminant Error Correcting Output Codes Using Particle Swarm Optimization,ifier we can additionally apply the Particle Swarm Optimization algorithm to tune its free parameters. Our experimental results show that by applying Particle Swarm Optimization on the Sub-class Linear Discriminant Error Correcting Output Codes framework we get a significant improvement in the classification performance.
25#
發(fā)表于 2025-3-25 22:56:48 | 只看該作者
26#
發(fā)表于 2025-3-26 01:59:13 | 只看該作者
27#
發(fā)表于 2025-3-26 06:25:15 | 只看該作者
Fermat’s Last Theorem for Amateursn provides a fast adjustment of the BCI system to mild changes of the signal. The proposed algorithm was validated on artificial and real data sets. In comparison to generic Multi-Way PLS, the recursive algorithm demonstrates good performance and robustness.
28#
發(fā)表于 2025-3-26 11:41:09 | 只看該作者
Fermat’s Last Theorem for Amateursed for regression problems of big and complex datasets. It was applied to the problem of steel temperature prediction in the electric arc furnace in order to decrease the process duration at one of the steelworks.
29#
發(fā)表于 2025-3-26 15:25:16 | 只看該作者
30#
發(fā)表于 2025-3-26 17:54:32 | 只看該作者
Weakly Supervised Learning of Foreground-Background Segmentation Using Masked RBMs,very weak supervision. The model generates plausible samples and performs foreground-background segmentation. We demonstrate that representing foreground objects independently of the background can be beneficial in recognition tasks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
多伦县| 措美县| 莱西市| 大竹县| 陵水| 岗巴县| 揭东县| 咸丰县| 建阳市| 尖扎县| 泸州市| 锡林浩特市| 汝南县| 张家川| 湖南省| 南皮县| 新化县| 双江| 永吉县| 盐源县| 深泽县| 乐昌市| 弥渡县| 葫芦岛市| 共和县| 彰化县| 乌兰浩特市| 崇信县| 饶阳县| 常山县| 彭州市| 元谋县| 万安县| 廊坊市| 铜鼓县| 定远县| 郓城县| 阳西县| 韶关市| 咸宁市| 巴南区|