找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning - ICANN 2011; 21st International C Timo Honkela,W?odzis?aw Duch,Samuel Kaski Conference pro

[復(fù)制鏈接]
樓主: MIFF
21#
發(fā)表于 2025-3-25 05:21:23 | 只看該作者
22#
發(fā)表于 2025-3-25 09:58:04 | 只看該作者
https://doi.org/10.1007/978-3-662-31589-7ifier we can additionally apply the Particle Swarm Optimization algorithm to tune its free parameters. Our experimental results show that by applying Particle Swarm Optimization on the Sub-class Linear Discriminant Error Correcting Output Codes framework we get a significant improvement in the classification performance.
23#
發(fā)表于 2025-3-25 15:04:35 | 只看該作者
24#
發(fā)表于 2025-3-25 17:56:55 | 只看該作者
Optimizing Linear Discriminant Error Correcting Output Codes Using Particle Swarm Optimization,ifier we can additionally apply the Particle Swarm Optimization algorithm to tune its free parameters. Our experimental results show that by applying Particle Swarm Optimization on the Sub-class Linear Discriminant Error Correcting Output Codes framework we get a significant improvement in the classification performance.
25#
發(fā)表于 2025-3-25 22:56:48 | 只看該作者
26#
發(fā)表于 2025-3-26 01:59:13 | 只看該作者
27#
發(fā)表于 2025-3-26 06:25:15 | 只看該作者
Fermat’s Last Theorem for Amateursn provides a fast adjustment of the BCI system to mild changes of the signal. The proposed algorithm was validated on artificial and real data sets. In comparison to generic Multi-Way PLS, the recursive algorithm demonstrates good performance and robustness.
28#
發(fā)表于 2025-3-26 11:41:09 | 只看該作者
Fermat’s Last Theorem for Amateursed for regression problems of big and complex datasets. It was applied to the problem of steel temperature prediction in the electric arc furnace in order to decrease the process duration at one of the steelworks.
29#
發(fā)表于 2025-3-26 15:25:16 | 只看該作者
30#
發(fā)表于 2025-3-26 17:54:32 | 只看該作者
Weakly Supervised Learning of Foreground-Background Segmentation Using Masked RBMs,very weak supervision. The model generates plausible samples and performs foreground-background segmentation. We demonstrate that representing foreground objects independently of the background can be beneficial in recognition tasks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 11:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天等县| 武安市| 巍山| 泗水县| 伊宁市| 杨浦区| 崇州市| 昭觉县| 中江县| 正阳县| 武川县| 内丘县| 渝北区| 伊通| 建昌县| 银川市| 始兴县| 桓台县| 宿迁市| 阜新| 渑池县| 门源| 桐梓县| 衡阳县| 松原市| 衡山县| 石渠县| 巴林右旗| 邛崃市| 卓尼县| 孝义市| 台安县| 信阳市| 九龙坡区| 南昌县| 甘孜县| 宁晋县| 全椒县| 和政县| 梁平县| 蒙阴县|