找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks; Hugh Cartwright Book 2021Latest edition Springer Science+Business Media, LLC, part of Springer Nature 2021 bio

[復(fù)制鏈接]
樓主: FLUX
51#
發(fā)表于 2025-3-30 08:43:08 | 只看該作者
,A Hybrid Levenberg–Marquardt Algorithm on a Recursive Neural Network for Scoring Protein Models,h its sequence. We show that a partial combination of the Levenberg–Marquardt algorithm and the back-propagation algorithm produced the best results, giving the lowest error and largest Pearson correlation coefficient. We also find, as previous studies, that adding associative memory to a neural net
52#
發(fā)表于 2025-3-30 14:15:04 | 只看該作者
Secure and Scalable Collection of Biomedical Data for Machine Learning Applications,unts of labeled data. This chapter focuses on the prerequisite steps to the training of any algorithm: data collection and labeling. In particular, we tackle how data collection can be set up with scalability and security to avoid costly and delaying bottlenecks. Unprecedented amounts of data are no
53#
發(fā)表于 2025-3-30 19:50:17 | 只看該作者
54#
發(fā)表于 2025-3-31 00:45:01 | 只看該作者
1064-3745 ation advice from the experts?.This volume presents examples of how Artificial Neural Networks (ANNs) are applied in biological sciences and related areas. Chapters cover a wide variety of topics, including the analysis of intracellular sorting information,?prediction of the behavior of bacterial co
55#
發(fā)表于 2025-3-31 01:22:31 | 只看該作者
https://doi.org/10.1007/3-540-27502-9ncreasingly playing a very important role. The “black box” nature of ANNs acts as a barrier in providing biological interpretation of the model. Here, the basic steps toward building models for biological systems and interpreting them using calliper randomization approach to capture complex information are described.
56#
發(fā)表于 2025-3-31 05:27:22 | 只看該作者
Building and Interpreting Artificial Neural Network Models for Biological Systems,ncreasingly playing a very important role. The “black box” nature of ANNs acts as a barrier in providing biological interpretation of the model. Here, the basic steps toward building models for biological systems and interpreting them using calliper randomization approach to capture complex information are described.
57#
發(fā)表于 2025-3-31 11:59:54 | 只看該作者
58#
發(fā)表于 2025-3-31 16:19:22 | 只看該作者
Computational Methods for Elucidating Gene Expression Regulation in Bacteria,, terminators, and sRNAs together with their targets. Here we describe the state of the art in computational methods to perform promoter recognition, sRNA identification, and sRNA target prediction. Additionally, we provide step-by-step instructions to use current approaches to perform these tasks.
59#
發(fā)表于 2025-3-31 18:43:11 | 只看該作者
60#
發(fā)表于 2025-3-31 23:26:47 | 只看該作者
Femtosekundenoptiken und -instrumente,rning methods to drug design. In this chapter, we will give a brief description of these two different de novo methods, compare their application scopes and discuss their possible development in the future.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 08:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东丽区| 奇台县| 双鸭山市| 石楼县| 青铜峡市| 青河县| 泰宁县| 澄迈县| 曲阳县| 龙川县| 调兵山市| 临洮县| 祁阳县| 绥棱县| 乌兰浩特市| 宾川县| 陆川县| 芜湖县| 金沙县| 永康市| 都江堰市| 西乌珠穆沁旗| 多伦县| 威信县| 肃南| 临海市| 漳平市| 家居| 宁都县| 郴州市| 岫岩| 衢州市| 缙云县| 安塞县| 巴楚县| 海伦市| 鄂尔多斯市| 阿勒泰市| 新郑市| 吉隆县| 泾源县|