找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Nets and Genetic Algorithms; Proceedings of the I David W. Pearson,Nigel C. Steele,Rudolf F. Albrech Conference proceedin

[復(fù)制鏈接]
查看: 30994|回復(fù): 67
樓主
發(fā)表于 2025-3-21 18:36:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Neural Nets and Genetic Algorithms
期刊簡(jiǎn)稱Proceedings of the I
影響因子2023David W. Pearson,Nigel C. Steele,Rudolf F. Albrech
視頻videohttp://file.papertrans.cn/163/162617/162617.mp4
發(fā)行地址Latest developments in neural nets and genetic algorithms
圖書封面Titlebook: Artificial Neural Nets and Genetic Algorithms; Proceedings of the I David W. Pearson,Nigel C. Steele,Rudolf F. Albrech Conference proceedin
影響因子The 2003 edition of ICANNGA marks a milestone in this conference series, because it is the tenth year of its existence. The series began in 1993 with the inaugural conference at Innsbruck in Austria. At that first conference, the organisers decided to organise a similar scientific meeting every two years. As a result, conferences were organised at Ales in France (1995), Norwich in England (1997), Portoroz in Slovenia (1999) and Prague in the Czech Republic (2001). It is a great honour that the conference is taking place in France for the second time. Each edition of ICANNGA has been special and had its own character. Not only that, participants have been able to sample the life and local culture in five different European coun- tries. Originally limited to neural networks and genetic algorithms the conference has broadened its outlook over the past ten years and now includes papers on soft computing and artificial intelligence in general. This is one of the reasons why the reader will find papers on fuzzy logic and various other topics not directly related to neural networks or genetic algorithms included in these proceedings. We have, however, kept the same name, "International Co
Pindex Conference proceedings 2003
The information of publication is updating

書目名稱Artificial Neural Nets and Genetic Algorithms影響因子(影響力)




書目名稱Artificial Neural Nets and Genetic Algorithms影響因子(影響力)學(xué)科排名




書目名稱Artificial Neural Nets and Genetic Algorithms網(wǎng)絡(luò)公開度




書目名稱Artificial Neural Nets and Genetic Algorithms網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Neural Nets and Genetic Algorithms被引頻次




書目名稱Artificial Neural Nets and Genetic Algorithms被引頻次學(xué)科排名




書目名稱Artificial Neural Nets and Genetic Algorithms年度引用




書目名稱Artificial Neural Nets and Genetic Algorithms年度引用學(xué)科排名




書目名稱Artificial Neural Nets and Genetic Algorithms讀者反饋




書目名稱Artificial Neural Nets and Genetic Algorithms讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:57:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:38:29 | 只看該作者
A learning probabilistic neural network with fuzzy inference,roposed. The advantages of this network lie in the possibility of classification of the data with substantially overlapping clusters, and tuning of the activation function parameters improves the accuracy of classification. Simulation results confirm the efficiency of the proposed approach in the da
地板
發(fā)表于 2025-3-22 08:10:43 | 只看該作者
5#
發(fā)表于 2025-3-22 12:10:06 | 只看該作者
6#
發(fā)表于 2025-3-22 14:59:12 | 只看該作者
7#
發(fā)表于 2025-3-22 18:49:19 | 只看該作者
A hybrid algorithm for weight and connectivity optimization in feedforward neural networks,or performance because of lack of expressional capacity, while a too large network fits noise or apparent relations in the data sets studied. The work required to find a parsimonious network is often considerable with respect to both time and computational effort. This paper presents a method for tr
8#
發(fā)表于 2025-3-23 00:11:29 | 只看該作者
9#
發(fā)表于 2025-3-23 04:30:13 | 只看該作者
Binary Factorization in Hopfield-Like Neural Autoassociator: A Promising Tool for Data Compression,n feature extraction procedure which maps original patterns into features (factors) space of reduced, possibily very small, dimension. In this paper, we outline that Hebbian unsupervised learning of Hopfield-like neural network is a natural procedure for factor extraction. Due to this learning, fact
10#
發(fā)表于 2025-3-23 07:54:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 20:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵南县| 武穴市| 通海县| 青神县| 疏勒县| 烟台市| 宁陵县| 确山县| 景谷| 宣威市| 津南区| 花莲县| 景德镇市| 宁阳县| 张掖市| 二连浩特市| 三台县| 北辰区| 新营市| 锦州市| 桓台县| 南江县| 大厂| 长白| 陵川县| 曲阜市| 贵州省| 东丰县| 德清县| 铜陵市| 贺州市| 防城港市| 哈巴河县| 巩义市| 沂源县| 邯郸县| 凉城县| 河北区| 竹山县| 福建省| 呼和浩特市|