找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Mathematical Intelligence; Cognitive, (Meta)mat Danny A. J. Gómez Ramírez Book 2020 Springer Nature Switzerland AG 2020 foundati

[復(fù)制鏈接]
樓主: Helmet
21#
發(fā)表于 2025-3-25 05:49:54 | 只看該作者
22#
發(fā)表于 2025-3-25 09:43:51 | 只看該作者
https://doi.org/10.1007/978-94-007-2831-8 A brief description of some of the most outstanding thematic gaps in the literature regading artificial conceptual generation is shown together with the way in which they will be filled within the AMI program. Finally, minimal ethical considerations for the development of this program are established.
23#
發(fā)表于 2025-3-25 14:04:56 | 只看該作者
Global Introduction to the Artificial Mathematical Intelligence General Program, A brief description of some of the most outstanding thematic gaps in the literature regading artificial conceptual generation is shown together with the way in which they will be filled within the AMI program. Finally, minimal ethical considerations for the development of this program are established.
24#
發(fā)表于 2025-3-25 17:06:01 | 只看該作者
25#
發(fā)表于 2025-3-25 23:27:26 | 只看該作者
The Most Outstanding (Future) Challenges Towards Global AMI and Its Plausible Extensionsta is also required in different formal (mathematical) areas. The ‘humanizing’ effects of a near fulfillment of artificial mathematical intelligence are described. Finally, plausible extensions of the artificial mathematical intelligence’s vision are shown to related scientific disciplines like physics, chemistry, biology, economics, and finances.
26#
發(fā)表于 2025-3-26 00:53:08 | 只看該作者
General Considerations for the New Cognitive Foundations’ Programcal proof are analyzed in detail. Finally, basic principles of the local nature of the (conscious) mind are presented where mathematics is considered, to some extent, as an explicit (cognitive) product of it.
27#
發(fā)表于 2025-3-26 06:47:01 | 只看該作者
Formal Analogical Reasoning in Concrete Mathematical Research former notion(s) is described for predicate logic. Finally, it is shown through concrete examples how these new notions can help to naturally meta-model the way in which our mind solves formal proofs starting with elementary, but not entirely trivial, theorems in a classic Hilbert’s style (propositional) calculus.
28#
發(fā)表于 2025-3-26 09:11:49 | 只看該作者
29#
發(fā)表于 2025-3-26 13:34:02 | 只看該作者
30#
發(fā)表于 2025-3-26 19:18:32 | 只看該作者
https://doi.org/10.1007/978-94-007-2831-8gram (Cognitive Metamathematics). Specifically, we briefly revise the notions of propositional and predicative logic, the most outstanding logical frameworks for modern mathematics (e.g., ZFC and NBG set theory, Peano arithmetic), and the notion of category and some of its derived notions. Moreover,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 15:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
任丘市| 安阳县| 天台县| 加查县| 沅江市| 师宗县| 安乡县| 梨树县| 斗六市| 南涧| 明水县| 无棣县| 土默特左旗| 双城市| 小金县| 长汀县| 宁河县| 石台县| 白河县| 徐州市| 三台县| 伊金霍洛旗| 柳林县| 灵川县| 革吉县| 白沙| 五峰| 扎赉特旗| 安庆市| 尤溪县| 镇江市| 商都县| 南皮县| 昂仁县| 公安县| 东海县| 辽阳市| 南投市| 陆丰市| 乌兰浩特市| 诏安县|