找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence/Machine Learning in Nuclear Medicine and Hybrid Imaging; Patrick Veit-Haibach,Ken Herrmann Book 2022 The Editor(s)

[復(fù)制鏈接]
樓主: 選民
21#
發(fā)表于 2025-3-25 07:14:25 | 只看該作者
Single Transistor Configurations,hine learning in particular, within the field of healthcare. We argue that, going forward, the deliberation and further development of ethics of AI and machine learning should be grounded more strongly in the field of data ethics than it is the case today. This is because of the specific nature of t
22#
發(fā)表于 2025-3-25 10:56:29 | 只看該作者
Frequency Compensation Techniques,vice organization, improve image quality while reducing patient exposure, and dramatically improve the amount and quality of diagnostic information in our studies. In this chapter, we adopt the point of view of the nuclear medicine physician. We discuss the biggest and most predictable benefits of A
23#
發(fā)表于 2025-3-25 13:32:33 | 只看該作者
24#
發(fā)表于 2025-3-25 16:30:41 | 只看該作者
25#
發(fā)表于 2025-3-25 22:08:22 | 只看該作者
Legal and Ethical Aspects of Machine Learning: Who Owns the Data?he digital data that enable machine learning and artificial intelligence. We then turn to the question of ownership, discussing what ownership means, and can mean, in the context of digital data, and who can legitimately own digital data used in and for imaging.
26#
發(fā)表于 2025-3-26 01:26:09 | 只看該作者
Implementing Digital Real-Time Servos,haracteristics of the development process and validation to finally detail how the process can be applied in hybrid modalities where it is highly relevant to combine the spatial information with the functional one.
27#
發(fā)表于 2025-3-26 05:21:45 | 只看該作者
28#
發(fā)表于 2025-3-26 09:45:06 | 只看該作者
29#
發(fā)表于 2025-3-26 15:14:53 | 只看該作者
30#
發(fā)表于 2025-3-26 18:27:03 | 只看該作者
Introduction to Feedback Control,ing and to predict clinical prognosis. Like with other advance statistical methods, the accuracy and generalizability of AI/DL methods is enhanced using large and heterogenous datasets to develop robust AI/DL models and applications that can transform the field of healthcare, hybrid and molecular imaging.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 00:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
色达县| 修武县| 金湖县| 松阳县| 康保县| 新津县| 拉萨市| 伊吾县| 潞城市| 都兰县| 黄大仙区| 礼泉县| 中山市| 松滋市| 鹤岗市| 涞水县| 新和县| 盐山县| 黔西县| 开封市| 满洲里市| 鄂托克前旗| 体育| 赤水市| 云南省| 清涧县| 安陆市| 麻江县| 灯塔市| 峨眉山市| 徐汇区| 龙陵县| 枣强县| 桃源县| 黄骅市| 嘉定区| 荣成市| 班戈县| 芷江| 巴彦淖尔市| 墨竹工卡县|