找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence in Financial Markets; Cutting Edge Applica Christian L. Dunis,Peter W. Middleton,Konstantinos Book 2016 The Editor(

[復(fù)制鏈接]
查看: 48129|回復(fù): 50
樓主
發(fā)表于 2025-3-21 17:58:54 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Intelligence in Financial Markets
期刊簡稱Cutting Edge Applica
影響因子2023Christian L. Dunis,Peter W. Middleton,Konstantinos
視頻videohttp://file.papertrans.cn/163/162455/162455.mp4
學(xué)科分類New Developments in Quantitative Trading and Investment
圖書封面Titlebook: Artificial Intelligence in Financial Markets; Cutting Edge Applica Christian L. Dunis,Peter W. Middleton,Konstantinos Book 2016 The Editor(
影響因子.As technology advancement has increased, so to have computational applications for forecasting, modelling and trading financial markets and information, and practitioners are finding ever more complex solutions to financial challenges. Neural networking is a highly effective, trainable algorithmic approach which emulates certain aspects of human brain functions, and is used extensively in financial forecasting allowing for quick investment decision making. . . This book presents the most cutting-edge artificial intelligence (AI)/neural networking applications for markets, assets and other areas of finance. Split into four sections, the book first explores time series analysis for forecasting and trading across a range of assets, including derivatives, exchange traded funds, debt and equity instruments. This section will focus on pattern recognition, market timing models, forecasting and trading of financial time series. Section II provides insights into macro and microeconomics and how AI techniques could be used to better understand and predict economic variables. Section III focuses on corporate finance and credit analysis providing an insight into corporate structures and credi
Pindex Book 2016
The information of publication is updating

書目名稱Artificial Intelligence in Financial Markets影響因子(影響力)




書目名稱Artificial Intelligence in Financial Markets影響因子(影響力)學(xué)科排名




書目名稱Artificial Intelligence in Financial Markets網(wǎng)絡(luò)公開度




書目名稱Artificial Intelligence in Financial Markets網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Intelligence in Financial Markets被引頻次




書目名稱Artificial Intelligence in Financial Markets被引頻次學(xué)科排名




書目名稱Artificial Intelligence in Financial Markets年度引用




書目名稱Artificial Intelligence in Financial Markets年度引用學(xué)科排名




書目名稱Artificial Intelligence in Financial Markets讀者反饋




書目名稱Artificial Intelligence in Financial Markets讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:34:58 | 只看該作者
https://doi.org/10.1007/978-1-4899-3266-2rtificial intelligence techniques. It is observed that artificial intelligent methods are more accurate when compared to traditional statistical methods. This review would be helpful to the researchers planning to explore the interdisciplinary field of computational finance.
板凳
發(fā)表于 2025-3-22 04:02:24 | 只看該作者
地板
發(fā)表于 2025-3-22 06:42:04 | 只看該作者
5#
發(fā)表于 2025-3-22 11:10:19 | 只看該作者
6#
發(fā)表于 2025-3-22 14:58:02 | 只看該作者
Linear Regression Versus Fuzzy Linear Regression: Does it Make a Difference in the Evaluation of themodified when we use FLR instead of OLS. These two approaches are applied on both the Treynor-Mazuy and Henriksson-Merton models over three sub-periods for a small sample of Greek equity mutual funds of different risk levels. According to our results, OLS and FLR models show great similarities, as observed by the estimated models.
7#
發(fā)表于 2025-3-22 20:05:11 | 只看該作者
8#
發(fā)表于 2025-3-22 21:15:04 | 只看該作者
Trading the FTSE100 Index: ‘Adaptive’ Modelling and Optimization Techniquess chapter, which include the introduction of an input selection criteria when utilizing an expansive universe of inputs, adaptive sliding window modelling, a hybrid combination of PSO and RBF algorithms, the application of a PSO algorithm to a traditional ARMA model, and finally the introduction of
9#
發(fā)表于 2025-3-23 02:16:14 | 只看該作者
10#
發(fā)表于 2025-3-23 07:35:32 | 只看該作者
GEPTrader: A New Standalone Tool for Constructing Trading Strategies with Gene Expression Programminon Programming (GEP) techniques. This tool is offered with a user-friendly interface that allows even the less sophisticated analysts, investors and academics to construct their own forecasting models. In a case study this chapter applies the GEPTrader to the task of forecasting and trading the SPDR
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 14:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麦盖提县| 深水埗区| 泰安市| 海安县| 临夏市| 昆明市| 资中县| 永泰县| 英德市| 梅河口市| 山阴县| 江阴市| 宿迁市| 泰兴市| 罗源县| 涞源县| 新昌县| 沿河| 乐东| 威信县| 高雄县| 罗定市| 云梦县| 锡林郭勒盟| 黔西县| 嘉鱼县| 柳江县| 阿图什市| 蕲春县| 南靖县| 调兵山市| 尼勒克县| 饶平县| 三江| 筠连县| 正镶白旗| 新民市| 武陟县| 西畴县| 阳朔县| 乌拉特中旗|