找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence in China; Proceedings of the I Qilian Liang,Wei Wang,Bingcai Chen Conference proceedings 2020 Springer Nature Singa

[復(fù)制鏈接]
樓主: protocol
51#
發(fā)表于 2025-3-30 10:34:41 | 只看該作者
52#
發(fā)表于 2025-3-30 12:30:50 | 只看該作者
,Recurrent Neural Detection of Time–Frequency Overlapped Interference Signals,ediction signal and original signal to do interference detection. The proposed method can achieve a better sensitivity and determine the exact location of the complete interfering signal. In the experiment part, we demonstrate the efficacy of this method in multiple typical scenarios of time–frequency overlapped wireless signals.
53#
發(fā)表于 2025-3-30 16:33:58 | 只看該作者
54#
發(fā)表于 2025-3-31 00:38:08 | 只看該作者
An Incident Identification Method Based on Improved RCNN,ional model are improved, and through experimental comparison, the optimal model in the training model is selected. Finally, the accuracy of the model is 90%, the recall rate is 92.55%, and the F1 value, a metric that combines accuracy and recall, is 91.26%, which proves that the improved model has good effects.
55#
發(fā)表于 2025-3-31 02:37:28 | 只看該作者
Microblog Rumor Detection Based on Comment Sentiment and CNN-LSTM,short-term memory (LSTM) is connected to the pooling layer and full connection layer of convolutional neural network (CNN). Meanwhile, comment sentiment is added to rumor detection model as an important feature. The effectiveness of this method is verified by experiments.
56#
發(fā)表于 2025-3-31 06:14:30 | 只看該作者
A Guideline for Object Detection Using Convolutional Neural Networks,bject localization or landmark by a neural network. And then I will give the detail of sliding windows detection algorithm and introduce how to use the convolutional implementation of sliding windows to speed up the process. Then we will introduce the transfer learning and how to prepare your own learning data for training networks.
57#
發(fā)表于 2025-3-31 09:30:38 | 只看該作者
https://doi.org/10.1007/978-3-8349-9043-3 lateral collision risk of military and civil aviation, the size, layout, and use suggestions of military high slope circling training airspace are obtained, which can provide reference for the airspace safety assessment.
58#
發(fā)表于 2025-3-31 15:32:38 | 只看該作者
59#
發(fā)表于 2025-3-31 20:42:24 | 只看該作者
60#
發(fā)表于 2025-4-1 00:07:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 10:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江陵县| 铁力市| 古蔺县| 临城县| 遂川县| 南郑县| 桂平市| 斗六市| 新乡市| 新和县| 淮滨县| 温州市| 武穴市| 广西| 萍乡市| 深水埗区| 鹤壁市| 西平县| 涪陵区| 开江县| 新源县| 昌江| 聂荣县| 竹北市| 西贡区| 乾安县| 凤阳县| 政和县| 商水县| 乌拉特中旗| 宁晋县| 新源县| 陕西省| 瓮安县| 高雄县| 蕲春县| 苏州市| 鄂托克前旗| 芜湖县| 徐汇区| 武义县|