找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence in China; Proceedings of the 3 Qilian Liang,Wei Wang,Zhenyu Na Conference proceedings 2022 The Editor(s) (if applic

[復制鏈接]
樓主: 吞食
51#
發(fā)表于 2025-3-30 09:10:54 | 只看該作者
Reverse Attention U-Net for Brain Grey Matter Nuclei Segmentation,ns while highlighting background, which guides the network to explore the missing nuclei parts sequentially. Experimental results on our nuclei dataset imply that the RAU-Net performs favorably against the state-of-the-art methods.
52#
發(fā)表于 2025-3-30 12:24:53 | 只看該作者
53#
發(fā)表于 2025-3-30 16:56:19 | 只看該作者
Small-Object Detection with Super Resolution Embedding,f-the-art detector (YOLOv3). Extensive experiments on a public (car overhead with context) dataset and another self-assembled airport surface dataset show superior performance of our method compared to the standalone state-of-the-art object detectors.
54#
發(fā)表于 2025-3-31 00:27:11 | 只看該作者
55#
發(fā)表于 2025-3-31 04:26:20 | 只看該作者
Autoencoder-Based Baseline Parameterized by Central Limit Theorem for ICS Cybersecurity,d has stable interactive features. In the paper, we analyze the ICS network interaction and construct a parameterized baseline by an autoencoder to detect the intrusion. The experiment with an open ICS dataset shows that this baseline could achieve intrusion detection accuracy above 90% and the false alarm rate below 5%.
56#
發(fā)表于 2025-3-31 06:33:13 | 只看該作者
Image Compression Based on Mixed Matrix Decomposition of NMF and SVD,work on images. The experimental results demenstrated that this approach based on mixed matrix decomposition had a CR with larger dynamic range through flexible parameter adjustment and the PSNR of the restored image is 29?dB–36?dB. It verifiy that this method is effective.
57#
發(fā)表于 2025-3-31 12:01:10 | 只看該作者
Information Extraction of Air-Traffic Control Instructions via Pre-trained Models,ts of handcraft annotations. The large scale pre-trained model (PTMs) can solve this problem by “pre-training” and “fine-tuning”. This paper proposes: 1) pre-trained models to extract information from few scale ATC instructions; 2) the probing task to find which layer of model achieves the best performance of information extraction task.
58#
發(fā)表于 2025-3-31 16:40:35 | 只看該作者
Medical Image Segmentation Using Transformer,amed TransHarDNet. HarDNet, which is a low memory traffic CNN. We combine it as backbone with Transformer. Our network enables the global semantic context information and low-level spatial details of the input image to be captured more effectively. We evaluate the effectiveness of the proposed network on five medical image datasets.
59#
發(fā)表于 2025-3-31 19:31:52 | 只看該作者
60#
發(fā)表于 2025-3-31 22:45:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 18:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
石屏县| 肥城市| 阿鲁科尔沁旗| 汤原县| 巧家县| 正蓝旗| 永新县| 大冶市| 邵阳县| 沙河市| 环江| 稻城县| 扎鲁特旗| 柳州市| 定远县| 保德县| 深泽县| 花莲市| 郸城县| 乐清市| 定兴县| 桑日县| 磐安县| 柞水县| 福建省| 绥中县| 临澧县| 诏安县| 谢通门县| 甘德县| 乐陵市| 桃园市| 湘潭县| 教育| 泗洪县| 祥云县| 宜阳县| 马关县| 金秀| 潼关县| 城固县|