找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence for Financial Markets; The Polymodel Approa Thomas Barrau,Raphael Douady Book 2022 The Editor(s) (if applicable) an

[復(fù)制鏈接]
樓主: Halcyon
21#
發(fā)表于 2025-3-25 03:24:13 | 只看該作者
22#
發(fā)表于 2025-3-25 10:10:18 | 只看該作者
https://doi.org/10.1007/978-3-8349-9782-1stness tests. Through the implementation of the trading strategy, we propose a method to tackle the problem of the aggregation of the predictions of a polymodel, based on the information added by each elementary model.
23#
發(fā)表于 2025-3-25 13:52:35 | 只看該作者
24#
發(fā)表于 2025-3-25 19:25:33 | 只看該作者
Book 2022ing polymodels in very different ways, and a genetic algorithm is describedwhich combines these different predictions into a single portfolio, aiming to optimize the portfolio returns net of transaction costs. Addressed to investors at all levels of experience this book will also be of interest to b
25#
發(fā)表于 2025-3-25 22:28:50 | 只看該作者
Polymodel Theory: An Overview, how polymodels are, in several respects, a superior alternative to classical multivariate regressions estimated with OLS, Ridge and Stepwise techniques; we also present the limits of the method. Although it is a regression technique, we clarify how the polymodels framework is closer to artificial intelligence than traditional statistics.
26#
發(fā)表于 2025-3-26 03:27:06 | 只看該作者
27#
發(fā)表于 2025-3-26 05:43:43 | 只看該作者
https://doi.org/10.1007/978-3-030-97319-3AI for finance; Quantitative strategies; Polymodels; Machine learning; Cross section of stock returns; No
28#
發(fā)表于 2025-3-26 11:13:57 | 只看該作者
978-3-030-97321-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
29#
發(fā)表于 2025-3-26 14:35:32 | 只看該作者
30#
發(fā)表于 2025-3-26 20:07:44 | 只看該作者
Regel: Jeder Erfolg hat Spielregeln how polymodels are, in several respects, a superior alternative to classical multivariate regressions estimated with OLS, Ridge and Stepwise techniques; we also present the limits of the method. Although it is a regression technique, we clarify how the polymodels framework is closer to artificial intelligence than traditional statistics.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 17:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荥经县| 柘荣县| 榆林市| 朝阳区| 分宜县| 钦州市| 泰来县| 中阳县| 日土县| 韶关市| 梅河口市| 松溪县| 咸阳市| 千阳县| 桐乡市| 龙川县| 克东县| 平度市| 镇雄县| 芦溪县| 上饶县| 和田市| 邹城市| 铜陵市| 中方县| 加查县| 兖州市| 宿迁市| 宝丰县| 淳化县| 儋州市| 甘德县| 深泽县| 高安市| 京山县| 石泉县| 澄城县| 龙川县| 绥中县| 江都市| 大丰市|