找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence for Edge Computing; Mudhakar Srivatsa,Tarek Abdelzaher,Ting He Book 2023 The Editor(s) (if applicable) and The Aut

[復(fù)制鏈接]
樓主: sustained
41#
發(fā)表于 2025-3-28 17:13:12 | 只看該作者
Termination and Well-Foundedness,d resources of edge devices. Many traditional AI models are designed for large-scale cloud environments with ample GPUs. The computational environment at the edge is substantially different. Specifically, it is much more resource-constrained. Fortunately, often edge applications are also more restri
42#
發(fā)表于 2025-3-28 20:27:07 | 只看該作者
https://doi.org/10.1007/978-3-658-12163-1al approaches have been proposed to mitigate this issue, using gradient compression and infrequent communication based techniques. This chapter summarizes two communication efficient algorithms, . and ., for . and . settings, respectively. These algorithms utilize . sparsification and quantization o
43#
發(fā)表于 2025-3-29 00:48:14 | 只看該作者
Warum sollten Sie dieses Buch lesen?,ditional data compression schemes that aim at supporting the reconstruction of the original data, here the compression only needs to support the learning of the models that need to be learned from the original data, in order to support AI applications in a bandwidth-limited edge network. This lowere
44#
發(fā)表于 2025-3-29 06:00:25 | 只看該作者
45#
發(fā)表于 2025-3-29 08:04:06 | 只看該作者
46#
發(fā)表于 2025-3-29 14:50:10 | 只看該作者
https://doi.org/10.1007/978-94-011-0131-8ms. To have the maximum applicability, the machine learning workloads will be simply modeled as demands for various types of resources (storage, communication, computation), and the resource allocation algorithms are designed to optimally satisfy these demands within the limited resource capacities
47#
發(fā)表于 2025-3-29 17:43:49 | 只看該作者
https://doi.org/10.1007/978-3-319-12799-6, for running DNN-based perception models in real time on resource-constraint edge platforms to process the sensing data stream (i.e., sequence of image frames). Mainstream machine inference frameworks commonly adopt a simple First-in-First-out (FIFO) policy to process the perceived images in a holi
48#
發(fā)表于 2025-3-29 20:44:26 | 只看該作者
49#
發(fā)表于 2025-3-30 02:57:07 | 只看該作者
50#
發(fā)表于 2025-3-30 05:09:20 | 只看該作者
http://image.papertrans.cn/b/image/162366.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 11:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新安县| 廉江市| 长海县| 类乌齐县| 东乌珠穆沁旗| 黑水县| 高阳县| 沂水县| 太保市| 芜湖市| 杭锦旗| 六盘水市| 大洼县| 丁青县| 桃园市| 绥棱县| 会泽县| 襄垣县| 天长市| 新田县| 醴陵市| 建水县| 辽阳县| 静安区| 永嘉县| 河南省| 六盘水市| 萨迦县| 普宁市| 武胜县| 中宁县| 平凉市| 吉木萨尔县| 双峰县| 江山市| 准格尔旗| 宜兴市| 汽车| 西盟| 江川县| 澄城县|