找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing – ICAISC 2006; 8th International Co Leszek Rutkowski,Ryszard Tadeusiewicz,Jacek M. ?ur Conferenc

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:44:10 | 只看該作者
12#
發(fā)表于 2025-3-23 15:07:50 | 只看該作者
13#
發(fā)表于 2025-3-23 20:24:41 | 只看該作者
14#
發(fā)表于 2025-3-24 01:57:05 | 只看該作者
RBF Nets in Faults Localizationwith a metric in the label space. Then, this problem is approximately solved, providing hints on selecting appropriate RBF nets. It was shown that the approximate solution is the exact one in several important cases. Finally, we propose the algorithm for learning the proposed RBF net. The results of
15#
發(fā)表于 2025-3-24 03:27:15 | 只看該作者
A Hypertube as a Possible Interpolation Region of a Neural Models based on the parametric curve modelling. The idea of it is to surround the parametric curve model with the hypertube covering most of the data points used in a neural model training. The practical application of the method will be shown via a system of an unemployment rate in Poland in years 1992-
16#
發(fā)表于 2025-3-24 07:09:43 | 只看該作者
17#
發(fā)表于 2025-3-24 13:58:36 | 只看該作者
Fast Orthogonal Neural Networksof basic operations associated with the algorithm of a given transform is used in order to substantially reduce the number of adapted weights of the network. Two new types of neurons corresponding to orthogonal basic operations are introduced and formulas for architecture-independent error backpropa
18#
發(fā)表于 2025-3-24 15:08:58 | 只看該作者
19#
發(fā)表于 2025-3-24 22:58:22 | 只看該作者
A Fast and Numerically Robust Neural Network Training Algorithm adaptively-adjustable time-varying forgetting factor technique, is presented first. Then a U-D factorization-based RPE (UD-RPE) algorithm is proposed to further improve the training rate and accuracy of the FNNs. In comparison with the backpropagation (BP) and existing RPE based training algorithms
20#
發(fā)表于 2025-3-25 02:52:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 16:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荆州市| 永福县| 曲松县| 舒兰市| 焉耆| 黄梅县| 息烽县| 兴山县| 龙江县| 新营市| 上蔡县| 蒙城县| 贵州省| 通渭县| 咸宁市| 新平| 醴陵市| 阿巴嘎旗| 横山县| 舞阳县| 张家川| 景东| 南充市| 集安市| 永新县| 湘西| 连州市| 新营市| 轮台县| 凌源市| 娄烦县| 永清县| 台安县| 仙居县| 昆山市| 临江市| 顺义区| 灵台县| 乌鲁木齐县| 四平市| 平安县|