找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing; 22nd International C Leszek Rutkowski,Rafa? Scherer,Jacek M. Zurada Conference proceedings 2023

[復制鏈接]
樓主: Interpolate
51#
發(fā)表于 2025-3-30 11:53:24 | 只看該作者
Christina Middelberg,Julia T?rperve accuracy without the need to directly optimize it in the agent’s reward function. In our experiments, we were able to reduce the total number of FLOPS of multiple popular neural network architectures by 5–10., incurring minimal or no performance drop and being on par with the solution found by maximizing the accuracy.
52#
發(fā)表于 2025-3-30 14:43:28 | 只看該作者
Application of?Monte Carlo Algorithms with?Neural Network-Based Intermediate Area to?the?Thousand Caements for computing complexity. The research showed no significant differences in the Monte Carlo approaches and the corresponding neural network methods. In the case of recursive method invocation, the effectiveness increased compared to the base methods.
53#
發(fā)表于 2025-3-30 19:26:34 | 只看該作者
Viscosity Estimation of?Water-PVP Solutions from?Droplets Using Artificial Neural Networks and?Imagestics to train an Artificial Neural Network model to estimate the viscosity values of the solutions. The proposed model was able to predict the viscosity value of the samples using the characteristics of their droplets with an accuracy of 83.08% on the test dataset.
54#
發(fā)表于 2025-3-30 23:44:02 | 只看該作者
55#
發(fā)表于 2025-3-31 04:46:00 | 只看該作者
https://doi.org/10.1007/978-3-031-42505-9algorithmic game theory and mechanism design; artificial intelligence; evolutionary algorithms; genetic
56#
發(fā)表于 2025-3-31 08:47:00 | 只看該作者
978-3-031-42504-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
57#
發(fā)表于 2025-3-31 12:35:08 | 只看該作者
Artificial Intelligence and Soft Computing978-3-031-42505-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
58#
發(fā)表于 2025-3-31 13:32:29 | 只看該作者
Medikolegale Aspekte im Rettungsdienstre of this paper contains a mathematical explanation for the batch approach, which can be utilized in the GQR algorithm. The final section of the article contains several simulations. They prove the novel approach to be superior to the original GQR algorithm.
59#
發(fā)表于 2025-3-31 19:31:38 | 只看該作者
Periphere und zentrale Venenzug?nge effectively reduce the high computational load of the LM algorithm. The detailed application of proposed methods in the process of learning neural networks is explicitly discussed. Experimental results have been obtained for all proposed methods and they confirm a very good performance of them.
60#
發(fā)表于 2025-4-1 00:58:00 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 11:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
将乐县| 莎车县| 霍州市| 临汾市| 岢岚县| 寿光市| 兴业县| 全州县| 申扎县| 六安市| 广德县| 屯门区| 娄烦县| 科技| 平安县| 涞源县| 贵溪市| 塔河县| 新余市| 濉溪县| 铜鼓县| 玉门市| 田阳县| 郓城县| 建德市| 白河县| 揭东县| 慈溪市| 万盛区| 黑山县| 镶黄旗| 尼玛县| 榆中县| 安阳市| 孝义市| 东至县| 淄博市| 华蓥市| 晋江市| 博客| 清水县|