找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Soft Computing; 16th International C Leszek Rutkowski,Marcin Korytkowski,Jacek M. Zurad Conference proceedings

[復(fù)制鏈接]
樓主: Gratification
21#
發(fā)表于 2025-3-25 06:38:38 | 只看該作者
https://doi.org/10.1007/978-1-4302-1050-4ness. Proposed DCT method is used to reduce the size of system which results in faster processing with limited and controlled precision lost. Proposed method is compared to other ones like Fuzzy Systems, Neural Networks, Support Vector Machines, etc. to investigate the ability to solve sample proble
22#
發(fā)表于 2025-3-25 09:21:13 | 只看該作者
23#
發(fā)表于 2025-3-25 15:07:33 | 只看該作者
Geometric Structures as Design Approach,onen learning rule is used with random parameters providing different neuron locations. Any new neuron configuration allows us to obtain a new ETSP solution. This new approach to exploring the solution space of the ETSP is easy to implement and suitable for relatively large ETSP problems. Furthermor
24#
發(fā)表于 2025-3-25 17:49:23 | 只看該作者
25#
發(fā)表于 2025-3-25 23:16:07 | 只看該作者
26#
發(fā)表于 2025-3-26 02:51:46 | 只看該作者
Author Profiling with Classification Restricted Boltzmann Machinesfiling framework with no need for handcrafted features and only minor use of text preprocessing and feature engineering. The classifier achieves competitive results when evaluated with the PAN-AP-13 corpus: 36.59% joint accuracy, 57.83% gender accuracy and 59.17% age accuracy. We also examine the re
27#
發(fā)表于 2025-3-26 07:18:44 | 只看該作者
28#
發(fā)表于 2025-3-26 10:07:28 | 只看該作者
Parallel Levenberg-Marquardt Algorithm Without Error Backpropagationhich will also work for MLP but some cells will stay empty. This approach is based on a very interesting idea of learning neural networks without error backpropagation. The presented architecture is based on completely new parallel structures to significantly reduce a very high computational load of
29#
發(fā)表于 2025-3-26 14:09:19 | 只看該作者
Spectral Analysis of CNN for Tomato Disease Identificationresults generated by a specific network without considering how the internal part of the network itself has generated those results. The visualization of the activations and features of the neurons generated by the network can help to determine the best network architecture for our proposed idea. By
30#
發(fā)表于 2025-3-26 20:14:13 | 只看該作者
From Homogeneous Network to Neural Nets with Fractional Derivative Mechanismuse of calculus of finite differences proposed by Dudek-Dyduch E. and then developed jointly with Tadeusiewicz R. and others. This kind of neural nets was applied mainly to different features extraction i.e. edges, ridges, maxima, extrema and many others that can be defined with the use of classic d
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 06:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朝阳县| 讷河市| 华宁县| 华安县| 宜兴市| 阆中市| 美姑县| 小金县| 崇州市| 黎川县| 休宁县| 呼伦贝尔市| 武城县| 武宁县| 卢龙县| 乳源| 兴安盟| 循化| 陇西县| 巴青县| 嘉祥县| 吐鲁番市| 池州市| 宁海县| 无极县| 铜川市| 望城县| 乌兰浩特市| 新泰市| 郎溪县| 南康市| 芦溪县| 沈丘县| 襄樊市| 清镇市| 萨迦县| 舒兰市| 咸丰县| 兴海县| 英吉沙县| 鄂尔多斯市|