找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Intelligence and Natural Language; 9th Conference, AINL Andrey Filchenkov,Janne Kauttonen,Lidia Pivovarova Conference proceeding

[復制鏈接]
樓主: choleric
41#
發(fā)表于 2025-3-28 18:01:13 | 只看該作者
42#
發(fā)表于 2025-3-28 22:39:08 | 只看該作者
43#
發(fā)表于 2025-3-29 02:10:43 | 只看該作者
44#
發(fā)表于 2025-3-29 03:22:45 | 只看該作者
https://doi.org/10.1007/978-3-662-06318-7plain that a generative model can improve accuracy and reduce the number of iteration steps for PageRank SSL. Moreover, we show that our framework outperforms the best graph-based SSL algorithms on four public citation graph data sets and improves the interpretability of classification results.
45#
發(fā)表于 2025-3-29 08:17:29 | 只看該作者
46#
發(fā)表于 2025-3-29 11:33:27 | 只看該作者
Advances of Transformer-Based Models for News Headline Generation,s on the RIA and Lenta datasets of Russian news. BertSumAbs increases ROUGE on average by 2.9 and 2.0 points respectively over previous best score achieved by Phrase-Based Attentional Transformer and CopyNet.
47#
發(fā)表于 2025-3-29 16:05:11 | 只看該作者
An Explanation Method for Black-Box Machine Learning Survival Models Using the Chebyshev Distance,termining important features and for explaining the black-box model prediction. Moreover, SurvLIME-Inf outperforms SurvLIME when the training set is very small. Numerical experiments with synthetic and real datasets demonstrate the SurvLIME-Inf efficiency.
48#
發(fā)表于 2025-3-29 22:12:53 | 只看該作者
Unsupervised Neural Aspect Extraction with Related Terms,demonstrate the effectiveness on the real-world dataset. We apply a special loss aimed to improve the quality of multi-aspect extraction. The experimental study demonstrates, what with this loss we increase the precision not only on this joint setting but also on aspect prediction only.
49#
發(fā)表于 2025-3-30 00:23:24 | 只看該作者
50#
發(fā)表于 2025-3-30 05:14:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
汶上县| 基隆市| 都安| 靖江市| 浮梁县| 永和县| 商水县| 和林格尔县| 库伦旗| 南投市| 咸丰县| 门源| 南溪县| 建始县| 望谟县| 宁晋县| 道孚县| 北京市| 胶南市| 富川| 朔州市| 大埔县| 罗平县| 滦平县| 普洱| 松江区| 佛冈县| 玉屏| 黑龙江省| 巫溪县| 红河县| 嘉黎县| 麻江县| 青河县| 竹北市| 岑溪市| 株洲市| 当雄县| 龙山县| 濮阳市| 光泽县|